scholarly journals Epigallocatechin Gallate Induces Upregulation of the Two-Component VraSR System by Evoking a Cell Wall Stress Response in Staphylococcus aureus

2012 ◽  
Vol 78 (22) ◽  
pp. 7954-7959 ◽  
Author(s):  
Oren Levinger ◽  
Tamar Bikels-Goshen ◽  
Elad Landau ◽  
Merav Fichman ◽  
Roni Shapira

ABSTRACTWe previously found that a short exposure ofStaphylococcus aureusto subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG ofsigBandvraSRtranscription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, anS. aureus315vraSRnull mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type andsigBnull mutant cells to lysostaphin, but this enhancement was much weaker in thevraSRnull mutant. Marked upregulation (about 60-fold) ofvraRand upregulation of the peptidoglycan biosynthesis-associated genesmurA,murF, andpbp2(2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRT-PCR). EGCG also induced the promoter ofsas016(encoding a cell wall stress protein of unknown function which is not induced invraSRnull mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.

2014 ◽  
Vol 58 (10) ◽  
pp. 5841-5847 ◽  
Author(s):  
Qiaobin Xiao ◽  
Sergei Vakulenko ◽  
Mayland Chang ◽  
Shahriar Mobashery

ABSTRACTStaphylococcus aureusis a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which hasin vitroandin vivoactivities against methicillin-resistantS. aureus(MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in theS. aureusstrain COL. Through serial passages, we generated twoS. aureusCOL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designatedS. aureusCOLI) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureusCOLR), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COLRstrain was derived from the COLIstrain. Whole-genome sequencing revealed 31 mutations inS. aureusCOLR, of which 29 were shared with COLI. Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations inS. aureusCOLRwere substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role formmpLin resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics inS. aureus.


2012 ◽  
Vol 56 (7) ◽  
pp. 3629-3640 ◽  
Author(s):  
Ambre Jousselin ◽  
Adriana Renzoni ◽  
Diego O. Andrey ◽  
Antoinette Monod ◽  
Daniel P. Lew ◽  
...  

ABSTRACTUnderstanding in detail the factors which permitStaphylococcus aureusto counteract cell wall-active antibiotics is a prerequisite to elaborating effective strategies to prolong the usefulness of these drugs and define new targets for pharmacological intervention. Methicillin-resistantS. aureus(MRSA) strains are major pathogens of hospital-acquired and community-acquired infections and are most often treated with glycopeptides (vancomycin and teicoplanin) because of their resistance to most penicillins and a limited arsenal of clinically proven alternatives. In this study, we examined PrsA, a lipid-anchored protein of the parvulin PPIase family (peptidyl-prolylcis/transisomerase) found ubiquitously in all Gram-positive species, in which it assists posttranslocational folding at the outer surface of the cytoplasmic membrane. We show by both genetic and biochemical assays thatprsAis directly regulated by the VraRS two-component sentinel system of cell wall stress. Disruption ofprsAis tolerated byS. aureus, and its loss results in no detectable overt macroscopic changes in cell wall architecture or growth rate under nonstressed growth conditions. Disruption ofprsAleads, however, to notable alterations in the sensitivity to glycopeptides and dramatically decreases the resistance of COL (MRSA) to oxacillin. Quantitative transcriptional analysis reveals thatprsAandvraRare coordinately upregulated in a panel of stable laboratory and clinical glycopeptide-intermediateS. aureus(GISA) strains compared to their susceptible parents. Collectively, our results point to a role forprsAas a facultative facilitator of protein secretion or extracellular folding and provide a framework for understanding whyprsAis a key element of the VraRS-mediated cell wall stress response.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Stephanie L. Kellogg ◽  
Jaime L. Little ◽  
Jessica S. Hoff ◽  
Christopher J. Kristich

ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci.


2016 ◽  
Vol 60 (5) ◽  
pp. 2639-2651 ◽  
Author(s):  
Kevin D. Mlynek ◽  
Mary T. Callahan ◽  
Anton V. Shimkevitch ◽  
Jackson T. Farmer ◽  
Jennifer L. Endres ◽  
...  

ABSTRACTPrevious studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistantStaphylococcus aureus(MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action—d-cycloserine and fosfomycin—also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators ofS. aureusβ-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Simon-Ulysse Vallet ◽  
Lykke Haastrup Hansen ◽  
Freja Cecillie Bistrup ◽  
Signe Aagaard Laursen ◽  
Julien Bortoli Chapalay ◽  
...  

ABSTRACT Rod-shaped bacteria frequently localize proteins to one or both cell poles in order to regulate processes such as chromosome replication or polar organelle development. However, the roles of polar factors in responses to extracellular stimuli have been generally unexplored. We employed chemical-genetic screening to probe the interaction between one such factor from Caulobacter crescentus, TipN, and extracellular stress and found that TipN is required for normal resistance of cell envelope-directed antibiotics, including vancomycin which does not normally inhibit growth of Gram-negative bacteria. Forward genetic screening for suppressors of vancomycin sensitivity in the absence of TipN revealed the TonB-dependent receptor ChvT as the mediator of vancomycin sensitivity. Loss of ChvT improved resistance to vancomycin and cefixime in the otherwise sensitive ΔtipN strain. The activity of the two-component system regulating ChvT (ChvIG) was increased in ΔtipN cells relative to the wild type under some, but not all, cell wall stress conditions that this strain was sensitized to, in particular cefixime and detergent exposure. Together, these results indicate that TipN contributes to cell envelope stress resistance in addition to its roles in intracellular development, and its loss influences signaling through the ChvIG two-component system which has been co-opted as a sensor of cell wall stress in Caulobacter. IMPORTANCE Maintenance of an intact cell envelope is essential for free-living bacteria to protect themselves against their environment. In the case of rod-shaped bacteria, the poles of the cell are potential weak points in the cell envelope due to the high curvature of the layers and the need to break and reform the cell envelope at the division plane as the cells divide. We have found that TipN, a factor required for correct division and cell pole development in Caulobacter crescentus, is also needed for maintaining normal levels of resistance to cell wall-targeting antibiotics such as vancomycin and cefixime, which interfere with peptidoglycan synthesis. Since TipN is normally located at the poles of the cell and at the division plane just before cells complete division, our results suggest that it is involved in stabilization of these weak points of the cell envelope as well as its other roles inside the cell.


Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1372-1383 ◽  
Author(s):  
Carl J. Balibar ◽  
Xiaoyu Shen ◽  
Dorothy McGuire ◽  
Donghui Yu ◽  
David McKenney ◽  
...  

Transcriptional profiling data accumulated in recent years for the clinically relevant pathogen Staphylococcus aureus have established a cell wall stress stimulon, which comprises a coordinately regulated set of genes that are upregulated in response to blockage of cell wall biogenesis. In particular, the expression of cwrA (SA2343, N315 notation), which encodes a putative 63 amino acid polypeptide of unknown biological function, increases over 100-fold in response to cell wall inhibition. Herein, we seek to understand the biological role that this gene plays in S. aureus. cwrA was found to be robustly induced by all cell wall-targeting antibiotics tested – vancomycin, oxacillin, penicillin G, phosphomycin, imipenem, hymeglusin and bacitracin – but not by antibiotics with other mechanisms of action, including ciprofloxacin, erythromycin, chloramphenicol, triclosan, rifampicin, novobiocin and carbonyl cyanide 3-chlorophenylhydrazone. Although a ΔcwrA S. aureus strain had no appreciable shift in MICs for cell wall-targeting antibiotics, the knockout was shown to have reduced cell wall integrity in a variety of other assays. Additionally, the gene was shown to be important for virulence in a mouse sepsis model of infection.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
C. J. Frapwell ◽  
P. J. Skipp ◽  
R. P. Howlin ◽  
E. M. Angus ◽  
Y. Hu ◽  
...  

ABSTRACT Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections.


2012 ◽  
Vol 56 (4) ◽  
pp. 1810-1820 ◽  
Author(s):  
Jennifer Campbell ◽  
Atul K. Singh ◽  
Jonathan G. Swoboda ◽  
Michael S. Gilmore ◽  
Brian J. Wilkinson ◽  
...  

ABSTRACTWall teichoic acids (WTAs) are phosphate-rich, sugar-based polymers attached to the cell walls of most Gram-positive bacteria. InStaphylococcus aureus, these anionic polymers regulate cell division, protect cells from osmotic stress, mediate host colonization, and mask enzymatically susceptible peptidoglycan bonds. Although WTAs are not required for survivalin vitro, blocking the pathway at a late stage of synthesis is lethal. We recently discovered a novel antibiotic, targocil, that inhibits a late acting step in the WTA pathway. Its target is TarG, the transmembrane component of the ABC transporter (TarGH) that exports WTAs to the cell surface. We examined here the effects of targocil onS. aureususing transmission electron microscopy and gene expression profiling. We report that targocil treatment leads to multicellular clusters containing swollen cells displaying evidence of osmotic stress, strongly induces the cell wall stress stimulon, and reduces the expression of key virulence genes, includingdltABCDand capsule genes. We conclude that WTA inhibitors that act at a late stage of the biosynthetic pathway may be useful as antibiotics, and we present evidence that they could be particularly useful in combination with beta-lactams.


2011 ◽  
Vol 56 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Shrenik Mehta ◽  
Arabela X. Cuirolo ◽  
Konrad B. Plata ◽  
Sarah Riosa ◽  
Jared A. Silverman ◽  
...  

ABSTRACTDaptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistantStaphylococcus aureus(MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients withS. aureusinfections after treatment with DAP. Different point mutations were found in themprFgene in DAP-resistant (DR) strains. Investigation of themprFL826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutatedmprFin DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested thatmprFwas not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory systemvraSR. Inactivation ofvraSRresulted in increased DAP susceptibility, while complementation ofvraSRmutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact ofvraSRandmprFmutations in the cell wall. Moreover, overexpression ofvraSRin DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations inmprF,vraSRcontributes to DAP resistance in the present group of clinical strains.


2019 ◽  
Author(s):  
Ghazal Ghazal Tajbakhsh ◽  
Dasantila Golemi-Kotra

Abstract Background Staphylococcus aureus remains a medical challenge in the treatment of bacterial infections. It has acquired resistance to commonly used antibiotics, and to those considered to be the last weapons in treating staphylococcal infections, such as vancomycin. Studies have revealed that S. aureus is capable of mounting a rapid response to antibiotics that target cell wall peptidoglycan biosynthesis, such as β-lactams and vancomycin. The two-component system VraSR has been linked to the coordination of this response. VraS is a histidine kinase that undergoes autophosphorylation in the presence of signals elicited upon cell wall damage and it then transfers its phosphoryl group to VraR. VraR is a response regulator protein that functions as a transcription factor. Phosphorylation of VraR leads to its dimerization, which is required for optimum binding to its target promoters. Two-component systems have been targeted for the development of antibacterial agents. Deletion of the vraS or vraR gene has been shown to re-sensitize S. aureus to β-lactams and vancomycin. Results In this study, we explored perturbation of the VraR phosphorylation-induced activation as a means to inhibit the VraSR-mediated signal transduction pathway. We show that dimerization of VraR is essential for the phosphorylation-induced activation of VraR. A single point mutation in the dimerization interface of VraR, in which Met13 was replaced by Ala, led to the inability of VraR to dimerize and to bind optimally to the target promoter. The consequences of these in vitro molecular deficiencies are equally dramatic in vivo. Complementation of a vraR deletion S. aureus strain with the vraRM13Ala mutant gene failed to induce the cell wall stress response. Conclusions This study highlights the potential of targeting the phosphorylation-induced dimerization of VraR to disrupt the S. aureus cell wall stress response and in turn to re-sensitize S. aureus to β-lactams and vancomycin.


Sign in / Sign up

Export Citation Format

Share Document