Epigallocatechin Gallate Induces Upregulation of the Two-Component VraSR System by Evoking a Cell Wall Stress Response in Staphylococcus aureus
ABSTRACTWe previously found that a short exposure ofStaphylococcus aureusto subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG ofsigBandvraSRtranscription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, anS. aureus315vraSRnull mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type andsigBnull mutant cells to lysostaphin, but this enhancement was much weaker in thevraSRnull mutant. Marked upregulation (about 60-fold) ofvraRand upregulation of the peptidoglycan biosynthesis-associated genesmurA,murF, andpbp2(2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRT-PCR). EGCG also induced the promoter ofsas016(encoding a cell wall stress protein of unknown function which is not induced invraSRnull mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.