scholarly journals Standardized preservation, extraction and quantification techniques for detection of fecal SARS-CoV-2 RNA

2021 ◽  
Author(s):  
Aravind Natarajan ◽  
Alvin Han ◽  
Soumaya Zlitni ◽  
Erin F. Brooks ◽  
Summer E. Vance ◽  
...  

Abstract COVID-19 patients shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. In our benchmarking study, we recommend a standardized protocol for the preservation, extraction and detection of viral RNA from stool. This protocol includes a preservative, viral RNA extraction steps, and PCR-based quantification methods to maximize yield and detection of SARS-CoV-2 RNA. Our protocol takes advantage of commercially available reagents and equipment to maximize ease of access and consistency across studies. Additionally, we apply an attenuated bovine coronavirus vaccine as a spike-in control, and synthetic RNA standards to improve standardization and reliability of the assay. While we recommend both ddPCR and RT-qPCR-based assays, we acknowledge that ddPCR may be prohibitively expensive due to the necessity of specialized equipment and reagents. This protocol was developed with a focus on SARS-CoV-2 RNA, but may apply to other coronaviruses as well. We estimate that this protocol takes between 6 to 8 hours total to quantify the viral RNA load in a fecal sample.

Author(s):  
Tae Goo Kang ◽  
Hong Miao Ji ◽  
Siow Pin Melvin Tan ◽  
Guang Kai Ignatius Tay ◽  
Ming Yi Daniel Ang ◽  
...  
Keyword(s):  

2016 ◽  
Vol 19 (3) ◽  
pp. 655-657 ◽  
Author(s):  
J. Kęsik-Maliszewska ◽  
M. Larska

Abstract The detection of Schmallenberg virus (SBV) in the breeding bull semen raised the question of the possibility of venereal transmission of SBV which could result in cost-intensive restrictions in the trade of bovine semen. In order to evaluate the presence of SBV RNA in bovine semen, 131 bull semen samples from four locations in Poland collected between 2013 and 2015 were analysed by RT-PCR for viral RNA. SBV RNA was detected in 5.3% of the samples. The study has revealed that application of an appropriate RNA extraction method is crucial to detect virus excretion via semen.


2021 ◽  
Author(s):  
Michal Mandelboim ◽  
Ella Mendelson ◽  
Yaron Drori ◽  
Nofar Atari ◽  
Tair Lapidot ◽  
...  

Abstract Introduction: While vaccination efforts against SARS-CoV-2 around the world are ongoing -, new high-infectious variants of the virus are being detected. The protection of the available vaccines against some of the new variants is weaker, and experts are concerned that newer as yet undescribed variants of this mutated RNA virus will eventually prove stable against the current vaccines. Additional preventive measures will therefore be needed to protect the population until effective vaccinations are widely available.TaffiX® is a personal, anti-viral nasal powder spray comprised of low pH Hypromellose that upon insufflation into the nose creates a thin gel layer covering the nasal mucosa and forming a protective mechanical barrier that prevents viruses from engaging with nasal cells- the main portal of entry for viruses. Taffix is commercially available in many countries across Europe, Asia America and Africa. In a prior preclinical study, TaffiX® was found to be effective against SARS-CoV-2 Hong Kong/VM20001061/2020 in experimental in vitro conditions. A real-life clinical survey demonstrated that TaffiX® nasal spray significantly reduced the SARS-CoV-2 infection rate post mass-gathering event in a highly endemic community.Objective: The current study aimed to test the protective effect of Taffix against new pathogenic, highly infectious SARS-CoV-2 variants in vitro: the “British” B.1.1.7 (hCoV-19/Israel/CVL-46879-ngs/2020) and the “South African” B.1.351 (hCoV-19/Israel/CVL-2557-ngs/2020) variants.Study design: A TaffiX® gel was formed on a nylon filter, using an amount equivalent to a clinical dose of Taffix . Filters were then seeded with SARS-CoV-2 B.1.1.7 (“British”) and B.1.351 (“South African”) variants. After a 10 -minute incubation at room temperature, the bottom of each filter was washed, and the resulting flow-through was collected and seeded into 24 -well plates containing Vero-E6 cells. After 5 days of incubation, a 200 µl sample from each well was taken for viral RNA extraction followed by SARS-CoV 2 RT-PCR analysis.Results: The TaffiX® gel completely blocked SARS-CoV-2 highly infectious variants B.1.1.7 and B.1.351 in vitro, reducing the titer of recoverable infectious virus as well as viral RNA by 100%.Conclusions: Under in vitro conditions, TaffiX® formed an effective protective barrier against SARS-COV-2 variants (British variant and South African Variant). These results are consistent with prior findings demonstrating the in vitro high efficacy of Taffix gel in preventing viruses from reaching cells and infecting them. These results, added to clinical real-life studies performed with Taffix , support its use as an effective barrier against new variants of SARS-CoV-2 in conjunction with other protective measures.


Author(s):  
Monica Sentmanat ◽  
Evguenia Kouranova ◽  
Xiaoxia Cui

ABSTRACTThe global outbreak of coronavirus disease 2019 (COVID-19) has placed an unprecedented burden on healthcare systems as the virus spread from the initial 27 reported cases in the city of Wuhan, China to a global pandemic in under three month[1]. Resources essential to monitoring virus transmission have been challenged with a demand for expanded surveillance. The CDC 2019-nCoV Real-Time Diagnostic Panel uses a real-time reverse transcription polymerase chain reaction (RT-PCR) consisting of two TaqMan probe and primer sets specific for the 2019-nCoV N gene, which codes for the nucleocapsid structural protein that encapsulates viral RNA, for the qualitative detection of 2019-nCoV viral RNA in respiratory samples. To isolate RNA from respiratory samples, the CDC lists RNA extraction kits from four manufacturers. In anticipation of a limited supply chain of RNA extraction kits and the need for test scalability, we sought to identify alternative RNA extraction methods. Here we show that direct lysis of respiratory samples can be used in place of RNA extraction kits to run the CDC 2019-nCoV Real-Time Diagnostic assay with the additional benefits of higher throughput, lower cost, faster turnaround and possibly higher sensitivity and improved safety.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1558
Author(s):  
Zhan Qiu Mao ◽  
Mizuki Fukuta ◽  
Jean Claude Balingit ◽  
Thi Thanh Ngan Nguyen ◽  
Co Thach Nguyen ◽  
...  

The RT-qPCR method remains the gold standard and first-line diagnostic method for the detection of SARS-CoV-2 and flaviviruses, especially in the early stage of viral infection. Rapid and accurate viral detection is a starting point in the containment of the COVID-19 pandemic and flavivirus outbreaks. However, the shortage of diagnostic reagents and supplies, especially in resource-limited countries that experience co-circulation of SARS-CoV-2 and flaviviruses, are limitations that may result in lesser availability of RT-qPCR-based diagnostic tests. In this study, the utility of RNA-free extraction methods was assessed for the direct detection of SARS-CoV-2 and DENV-2 in heat-inactivated or chemical-inactivated samples. The findings demonstrate that direct real-time RT-qPCR is a feasible option in comparison to conventional real-time RT-qPCR based on viral genome extraction-based methods. The utility of heat-inactivation and direct real-time RT-qPCR for SARS-CoV-2, DENV-2 viral RNA detection was demonstrated by using clinical samples of SARS-CoV-2 and DENV-2 and spiked cell culture samples of SARS-CoV-2 and DENV-2. This study provides a simple alternative workflow for flavivirus and SARS-CoV-2 detection that includes heat inactivation and viral RNA extraction-free protocols, with aims to reduce the risk of exposure during processing of SARS-CoV-2 biological specimens and to overcome the supply-chain bottleneck, particularly in resource limited settings with flavivirus co-circulation.


2020 ◽  
Vol 12 (3) ◽  
pp. 226-239
Author(s):  
Sheikh Md Rajiuddin ◽  
Tenna Jensen ◽  
Tina Beck Hansen ◽  
Anna Charlotte Schultz

Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 863 ◽  
Author(s):  
Steffen Klein ◽  
Thorsten G. Müller ◽  
Dina Khalid ◽  
Vera Sonntag-Buck ◽  
Anke-Mareil Heuser ◽  
...  

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


2004 ◽  
Vol 52 (2) ◽  
pp. 163-166 ◽  
Author(s):  
M. R. Seyfi Abad Shapouri ◽  
M. Mayahi ◽  
K. Assasi ◽  
S. Charkhkar

To evaluate the prevalence of infectious bronchitis virus (IBV) type 4/91 in Iran, tracheal swabs from 77 broiler flocks in 16 provinces were collected at the slaughterhouse. Swabs were subjected to RNA extraction and tested by RT-PCR, followed by a type-specific nested PCR. The viral RNA was detected in 33 samples (42.8%) from different provinces. The results indicate a relatively high prevalence of IBV type 4/91 in Iran and necessitate revising the vaccination programme against this disease.


Plant Disease ◽  
1997 ◽  
Vol 81 (2) ◽  
pp. 222-226 ◽  
Author(s):  
Donald J. MacKenzie ◽  
Morven A. McLean ◽  
Srima Mukerji ◽  
Margaret Green

An efficient procedure for the extraction of high-quality RNA from woody plants without the use of phenol, organic solvents, or alcohol precipitation is described. The method employs commercially available spin-column matrices and mitigates the inhibitory effects of plant polysaccharides and polyphenolic compounds commonly observed on subsequent polymerase chain reaction amplification when conventional extraction methods are applied to woody plant species. The method described has been successfully used in the development of highly sensitive reverse transcription-polymerase chain reaction (RT-PCR) techniques for the detection of a number of viruses in their woody hosts. The viruses detected included apple stem grooving capillovirus (ASGV), apple stem pitting virus, Prunus necrotic ringspot ilarvirus (PNRSV), grapevine fanleaf and Arabis mosaic nepoviruses, and grapevine leafroll-associated closterovirus type 3. The method described was equally effective for the extraction of viral RNA from either budwood, leaves, or flower blossoms as determined by the equivalent RT-PCR detection of ASGV and PNRSV from these tissues. Detection of viral RNA in samples of total plant RNA prepared using this method was found to be as sensitive as was previously described for the immunocapture RT-PCR technique.


Author(s):  
L. Yobas ◽  
Wing Hui ◽  
Hongmiao Ji ◽  
Yu Chen ◽  
S.I. Liw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document