scholarly journals How is Rice Organ Painted: the Genetic Basis of Anthocyanin Biosynthesis in Rice

Author(s):  
Duo Xia ◽  
Hao Zhou ◽  
Pingbo Li ◽  
Bian Wu ◽  
Qinglu Zhang ◽  
...  

Abstract Anthocyanins are major subclasses of flavonoids, which have diverse biological functions and benefit human health. In Oryza sativa, organs exhibit various color due to the accumulation of anthocyanins. On the other hand, anthocyanins biosynthesis is a domestication related trait. Revealing the genetic basis of anthocyanins biosynthesis in rice is not only important for the engineering of anthocyanins, but also helpful for understanding the evolutionary story of Oryza sativa. Here we summarize the recent progresses in rice anthocyanins biosynthesis, including the anthocyanins biosynthetic pathway, the genes that participate in anthocyanins biosynthesis, the cloning of anthocyanins related genes and the domestication process of rice anthocyanins. Possible applications of rice anthocyanin biosynthesis genes in rice breeding and the remaining unknown mechanism of anthocyanins accumulation in stigma, apiculus and awn are also discussed.

2013 ◽  
Vol 38 (12) ◽  
pp. 2147-2161
Author(s):  
Jian-Hua JIANG ◽  
Qiang-Ming LIU ◽  
Chao LU ◽  
Hong ZHANG ◽  
Xiao-Li LIU ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3026
Author(s):  
Xieyu Li ◽  
Fangxin Xiang ◽  
Wei Han ◽  
Bingqing Qie ◽  
Rui Zhai ◽  
...  

The N-terminal of Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains an interaction domain, namely the MYB-interacting region (MIR), which interacts with the R2R3-MYB proteins to regulate genes involved in the anthocyanin biosynthetic pathway. However, the functions of MIR-domain bHLHs in this pathway are not fully understood. In this study, PbbHLH2 containing the MIR-domain was identified and its function investigated. The overexpression of PbbHLH2 in ”Zaosu” pear peel increased the anthocyanin content and the expression levels of late biosynthetic genes. Bimolecular fluorescence complementation showed that PbbHLH2 interacted with R2R3-MYB TFs PbMYB9, 10, and 10b in onion epidermal cells and confirmed that MIR-domain plays important roles in the interaction between the MIR-domain bHLH and R2R3-MYB TFs. Moreover, PbbHLH2 bound and activated the dihydroflavonol reductase promoter in yeast one-hybrid (Y1H) and dual-luciferase assays. Taken together these results suggested that the MIR domain of PbbHLH2 regulated anthocyanin biosynthesis in pear fruit peel.


2021 ◽  
Vol 22 (23) ◽  
pp. 12824
Author(s):  
Weixin Liu ◽  
Yi Feng ◽  
Suhang Yu ◽  
Zhengqi Fan ◽  
Xinlei Li ◽  
...  

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1024
Author(s):  
Yan Hong ◽  
Mengling Li ◽  
Silan Dai

The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum ‘Purple Reagan’ were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Biruk A. Feyissa ◽  
Muhammad Arshad ◽  
Margaret Y. Gruber ◽  
Susanne E. Kohalmi ◽  
Abdelali Hannoufa

Abstract Background Developing Medicago sativa L. (alfalfa) cultivars tolerant to drought is critical for the crop’s sustainable production. miR156 regulates various plant biological functions by silencing SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. Results To understand the mechanism of miR156-modulated drought stress tolerance in alfalfa we used genotypes with altered expression levels of miR156, miR156-regulated SPL13, and DIHYDROFLAVONOL-4-REDUCTASE (DFR) regulating WD40–1. Previously we reported the involvement of miR156 in drought tolerance, but the mechanism and downstream genes involved in this process were not fully studied. Here we illustrate the interplay between miR156/SPL13 and WD40–1/DFR to regulate drought stress by coordinating gene expression with metabolite and physiological strategies. Low to moderate levels of miR156 overexpression suppressed SPL13 and increased WD40–1 to fine-tune DFR expression for enhanced anthocyanin biosynthesis. This, in combination with other accumulated stress mitigating metabolites and physiological responses, improved drought tolerance. We also demonstrated that SPL13 binds in vivo to the DFR promoter to regulate its expression. Conclusions Taken together, our results reveal that moderate relative miR156 transcript levels are sufficient to enhance drought resilience in alfalfa by silencing SPL13 and increasing WD40–1 expression, whereas higher miR156 overexpression results in drought susceptibility.


2016 ◽  
Vol 38 (5) ◽  
pp. 489-489
Author(s):  
Xiaobai Li ◽  
Wengui Yan ◽  
Hesham Agrama ◽  
Aaron Jackson ◽  
Melissa Jia ◽  
...  

2021 ◽  
pp. 1-29
Author(s):  
E. A. Siddiq ◽  
Lakshminarayana R. Vemireddy

AbstractRice (Oryza sativa L.) is life for more than half of the human population on Earth. In the history of rice breeding, two major yield breakthroughs or leaps occurred, which phenomenally revolutionized rice breeding: the Green Revolution in the 1960s and hybrid technology in the 1970s. However, the fruits of these technologies have not spread globally to all rice-growing areas, especially African countries, for diverse reasons. It is estimated that at least 50% more rice yield is needed to feed the anticipated nine billion people by 2050. This clearly warrants another breakthrough in rice. It is apparent that the currently used conventional and molecular marker-assisted methods need to be updated with multi-pronged approaches involving innovative cutting-edge technologies for achieving the next breakthrough in rice. Here, we attempt to discuss the exciting avenues for the next advances in rice breeding by exploiting cutting-edge technologies.


2021 ◽  
Author(s):  
Hao Gong ◽  
Bin Han

Abstract Genetic introgression plays an important role in the domestication of crops. The Asian cultivate rice consists of two major subspecies, they are indica and japonica. There are already many reports about existence of genetic introgression between the two subspecies. However, those studies often use few limited markers to characterize the genetic introgression that exists in some specific small populations. In this study we use the genome wide variation data of Asia cultivated rice to investigate their genetic introgression on the whole genome level. We detect a total of 13 significantly high introgression loci between the tropical japonica and indica population. Two different methods are used to identify the genetic introgression regions. For most of the detected introgression regions they generally get consistent results. Some previous known introgression genes are detected in the identified introgression loci, such as heat resistance gene TT1 and GLW7. The biological functions for these genetic introgression regions are annotated by the published QTL mapping results. We find that genetic introgression plays an important role in both the determination of the phenotype and the domestication process of different groups. Our study also provides useful information and resources for the study of rice gene function and domestication process.


Sign in / Sign up

Export Citation Format

Share Document