scholarly journals Multilayer Methylcellulose Substrate-Based Wearable Touch Sensor and Display for Communication

Author(s):  
Kim Yunsu ◽  
Sung-pil Chang ◽  
Youngjun Song

Abstract In recent years, flexible printed circuit boards (FPCBs) that have polyimide substrates have been widely used in electronic devices for industrial and academic research owing to their light weight, high dielectric constant, and flexibility. However, these FPCBs have a critical limitation of recycling, as polyimide is not degradable or eco-friendly. To overcome this issue, we fabricated cellulose-based FPCBs. Transparent and flexible methyl cellulose-based substrate was produced through a simple solvent evaporation process. The circuit layer was patterned of an Ag/carbon-nanotube composite fabricated using a stencil mask. The methyl cellulose-based FPCBs were evaluated for diverse mechanical stresses such as bending, torsional, and tensile stresses. In addition, their surface morphology was analyzed using optical microscopy and scanning electron microscopy. For the electrical properties, in addition to the current–voltage curves, their dielectric properties were analyzed. Finally, we reported the successful wearable communication device of the cellulose-based FPCBs in a 5 × 5 touch panel and a 5 × 5 light-emitting diode display.

2009 ◽  
Vol 85 (6) ◽  
pp. 341-350 ◽  
Author(s):  
Jong-Bum Lee ◽  
Ja-Myeong Koo ◽  
Jong-Woong Kim ◽  
Bo-In Noh ◽  
Jong-Gun Lee ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1473
Author(s):  
Aleksandr Vasjanov ◽  
Vaidotas Barzdenas

In the era of technology and communication, printed circuit boards (PCBs) can be found in a myriad of devices—from ordinary household items, to state of the art custom metrology equipment. Different types of component for wireless communications are available and come in various packages, supplied by multiple manufacturers. The signal landpads for some high-frequency connectors and components, encapsulated in larger packages, are usually wider than the controlled impedance trace, thereby introducing unwanted impedance mismatch and resulting in signal reflections. The component land pad and microstrip width a discrepancy issue can be found in both complex high-density industrial devices and system-level academic research papers. This paper addresses the topic of compensating discontinuities, introduced by signal pads, which are wider than the target impedance microstrip, characterizes the difference between the compensated and uncompensated microstrip with discontinuity, and proposes a generalized guideline on compensating for the introduced impedance change in multilayer PCBs. The compensation method is based upon carefully designing the stackup of the PCB allowing for a reference plane cutout under the discontinuity to even out the impedance mismatch. A 6-layer PCB with IT180A dielectric material containing three structures has been manufactured and characterized using an Agilent E8363B vector network analyzer (VNA). A 4–12 dB improvement in S11 response in the whole frequency range up to 10 GHz, compared to that when no compensation has been applied, was observed.


Author(s):  
Jian Zhong ◽  
Ping Yang ◽  
Jian-ping Li ◽  
Hai-bo Sun ◽  
Quayle Chen ◽  
...  

The paper mainly presented mechanical test and failure analysis methods to reliability study of a new FPCB (Flexible Printed Circuit Boards). Mechanical tests include flexural test, tensile test and flexural fatigue and ductility test. As to simulation analysis, the stress distributions of FPCB under bending and tensile conditions were gained by simulations. Through in-depth analysis of the testing results, the mechanical reliability of FPCB was known detailed. The research provides an approach to improve FPCB performance.


2008 ◽  
Vol 47 (5) ◽  
pp. 4300-4304 ◽  
Author(s):  
Jong-Bum Lee ◽  
Ja-Myeong Koo ◽  
Soon-Min Hong ◽  
Hyoyoung Shin ◽  
Young-jun Moon ◽  
...  

2017 ◽  
Vol 96 ◽  
pp. 393-402 ◽  
Author(s):  
Zhibo Cao ◽  
Xiaogang Zhao ◽  
Daming Wang ◽  
Chunhai Chen ◽  
Chunyan Qu ◽  
...  

2013 ◽  
Vol 655-657 ◽  
pp. 88-93 ◽  
Author(s):  
Luciano Arruda ◽  
Cristiano Coimbra ◽  
João Marco Andolfatto

This work is related to reliability of strain measurement in flexible printed circuit boards (fPCBs) made with polyimide substrate. It was observed that the fPCBs are very sensitive to strain mounting stiffness. The indirect measurement method will be done employing High Speed Camera (HSP). The direct method will be formulated in two ways: 1) conventional strain gauge glued in an fPCBs; 2) printed strain gauge in a polyimide substrate. This paper will point out mistakes and show advantages when using different method to extract the deformation field of the selected area in a flexible thin film.


Sign in / Sign up

Export Citation Format

Share Document