Legacy of Intensive Agricultural History in the Health of (Sub)Tropical Landscapes

Author(s):  
Susan Crow ◽  
Hannah Hubanks ◽  
Jonathan Deenik ◽  
Tai Maaz ◽  
Christine Tallamy Glazer ◽  
...  

Abstract Soil health conceptualized as a measurable ecosystem property provides a powerful tool for monitoring progress in restoration projects or implementation of best management practices to promote sustainable agroecosystems. We surveyed soils collected from a range of land uses (i.e., protected native and non-native forest, managed pasture, unmanaged previously intensive agricultural lands, organic cropland, and conventional cropland) across a range of soil orders (Oxisol, Mollisol, Andisol, Inceptisol, and Vertisol) on three Hawaiian Islands. Forty-six metrics associated with soil health and encompassing biological, chemical, and physical properties were measured. In this multivariate survey, the most distinct group was the unmanaged, previously intensive agriculture lands, which was significantly different from all other land uses regardless of mineralogy. Importantly, the soil health of well-managed pastures in Hawaiʻi was not different from protected forests, suggesting that well-managed grazing lands may be as healthy and resilient as protected forests. A suite of 11 readily measured parameters emerged out of a first-principle approach to determining a holistic indication of soil health across a range of soils and systems in Hawaiʻi encompassing much of the diversity in the tropics and subtropics. Every land use may improve its soil health status within a reasonable range of expectations for a soil’s land use history, current land use, and mineralogy. Key drivers of the measures for soil health, including intensive land use history, current land use practices, and mineralogy, must be interwoven into the soil health index, which should set minimum and maximum benchmarks and weight parameters according to equitable standards.

1993 ◽  
Vol 28 (3-5) ◽  
pp. 241-259 ◽  
Author(s):  
R. T. Bannerman ◽  
D. W. Owens ◽  
R. B. Dodds ◽  
N. J. Hornewer

Rainfall runoff samples were collected from streets, parking lots, roofs, driveways, and lawns. These five source areas are located in residential, commercial, and industrial land uses in Madison, Wisconsin. Solids, phosphorus, and heavy metals loads were determined for all the source areas using measured concentrations and runoff volumes estimated by the Source Load and Management Model. Source areas with relatively large contaminant loads were identified as critical source areas for each land use. Streets are critical source areas for most contaminants in all the land uses. Parking lots are critical in the commercial and industrial land uses. Lawns and driveways contribute large phosphorus loads in the residential land use. Roofs produce significant zinc loads in the commercial and industrial land uses. Identification of critical source areas could reduce the amount of area needing best-management practices in two areas of Madison, Wisconsin. Targeting best-management practices to 14% of the residential area and 40% of the industrial area could significantly reduce contaminant loads by up to 75%.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 72 ◽  
Author(s):  
Maurício Roberto Cherubin ◽  
João Luís Nunes Carvalho ◽  
Carlos Eduardo Pellegrino Cerri ◽  
Luiz Augusto Horta Nogueira ◽  
Glaucia Mendes Souza ◽  
...  

Bioenergy is an important and feasible option for mitigating global warming and climate change. However, large-scale land-use change (LUC) to expand bioenergy crops, such as sugarcane, raises concerns about the potential negative environmental and socioeconomic side effects. Such effects are context-specific, and depending on the LUC scenario and management practices, several co-benefits can be attained. We reviewed the literature and discussed how LUC and best management practices affect key components of sustainability (e.g., soil health, soil carbon (C) sequestration, greenhouse gas emissions (GHG) emissions, nutrient cycling, water quality, among others) of sugarcane-derived bioenergy production in Brazil. Sugarcane expansion has occurred predominantly over pasture areas, although converting croplands could be also an environmentally feasible option. The land transition from low-productivity pastures to sugarcane cultivation seems to be a sustainable pathway to increase bioenergy production. This LUC scenario enhances soil health and soil C sequestration over time, although soil compaction, biodiversity loss, and erosion are still challenging. Besides, adopting best management practices, such as conservation tillage, sustainable crop residue management, rational fertilization, and recycling by-products, has been fundamental to ensuring sustainable bioenergy production. Public policies and well-designed legal frameworks and regulations, such as the Forest Code and the RenovaBio legislations in Brazil, are necessary to make bioenergy production compatible with rational land use and protection. Lastly, our analysis provided insights into sugarcane expansion over a small proportion (1%) of pasture areas in Latin American and Caribbean (LAC) and sub-Saharan African (SSA) countries, which may result in a substantial impact on global bioenergy supply. We concluded that sugarcane-derived bioenergy is a sustainable option to tackle climate change while provisioning other key ecosystem services and promoting socioeconomic development.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


2019 ◽  
pp. 1-7

To understand how various factors influence phenological patterns like fruit production and the extent of phenological variability as survival strategy in different environments, fruit production of shea trees was studied in different agroclimatic zones (North Sudanian, South Sudanian and North Guinean) in Mali. Three sites were selected for this study and in each site; two stands (field and fallow) were concerned. For each stand, three “land use history or land management" i.e. new fields/fallows (1-5 years), medium (6-10 years) and old (10 years) were considered and permanent plots of 0.25 ha were established. 60 adult shea trees (DBH) ≥ 10 cm) were selected by site and monitored for fruit production assessment. The nested analysis of variance on the yield showed a significant site effect and significant effect of land use history within stand. However, stand effect within site was not significant. Factors like site and land management (land use history) appear to be determinant for fruit production of V. paradoxa. The site of Mperesso in the South Sudanian zone showed the highest fruit mean yield (11 kg/tree), significantly higher than the fruit mean yield observed at Daelan (7 kg/tree) in the North Sudanian zone and that observed at Nafégué (6 kg/tree) in the North Guinean zone. For field stand, old fields showed highest mean yield in all sites. For fallow stand, old fallows showed the lowest mean yield in most of cases. Different pattern was observed between field and fallow stands regarding the effect of land management. More fields are aged, more they influence positively fruit production whereas more fallows are aged, and more they influence negatively fruit production. This study highlighted the importance of land management practices and therefore, any domestication program to be successful should consider the potential effect of management practices.


Oryx ◽  
1973 ◽  
Vol 12 (1) ◽  
pp. 53-63
Author(s):  
James Lockie

Depopulation of the Scottish Highlands in the seventeenth century was followed by intense exploitation and often misuse of the land, with serious overgrazing, burning and wildlife destruction. Today the main land uses are hill sheep farming, crofting, sport, and, more recently, commercial timber growing, nature conservation, hydroelectric schemes and tourism. The author, who is on the staff of the Department of Forestry and Natural Resources in Edinburgh University, examines the effect of these activities on four main wildlife species – golden eagle, red deer, red grouse and red fox – and describes some of the mistaken management practices which damage the wildlife, often without producing the desired results.


2020 ◽  
Author(s):  
Andrea Critto ◽  
Hung Vuong Pham ◽  
Anna Sperotto ◽  
Silvia Torresan ◽  
Elisa Furlan ◽  
...  

<p>Freshwater ecosystems can be negatively affected by climate change and human interventions through the alteration of water supply and demand. There is an urgent need to protect the ecosystems, and the services they provide, to maintain their essential contribution to human wellbeing and economic prosperity, especially in a rapid and unpredictable global change context. In this work, we developed an integrated approach, coupling the outputs of ecosystem services (InVEST), climate (COSMO-CLM) and land use (LUISA) change models utilizing Bayesian Networks (BNs), to map freshwater-related Ecosystem Services (ESs), namely, water yield, nitrogen and phosphorus retention, and to assess their changes until 2050 under different management scenarios. First, InVEST was calibrated and validated with climate and land-use data to map and quantify ESs. Second, outputs of the ES model were integrated into the BN and the changes induced by different learning techniques and input settings were investigated. Finally, thousands of different scenarios were simulated testing multiple input variables configurations, thus allowing to describe the uncertainty of climate conditions, land-use change and water demand. Two types of inferences were conducted, namely, diagnostic and prognostic inference. The former permitted to find the best combination of the key drivers (i.e.  precipitation, land-use, and water demand) so that ESs are maximized while the latter concentrated on the quantification of ESs under different scenarios. This approach was applied and validated in the Taro River basin in Italy. The results show that the values of all the three types of ESs would decline in the medium-term period under most scenarios. Moreover, there would be a limit of space to improve those values, especially for nutrient retention services. The obtained results provide valuable support to identify and prioritize the best management practices for sustainable water use, balancing the tradeoffs among services. This analysis allows decision-makers to pick up one scenario with a specific configuration of land-use and water demand to optimize relevant ESs within their basin. Finally, these decisions are transformed into a “decision space” where the values of selected services are plotted in the space of ES to represent the gain/loss of each decision.</p>


2008 ◽  
Vol 57 (9) ◽  
pp. 1349-1354 ◽  
Author(s):  
Mi-Hyun Park ◽  
Michael K. Stenstrom

Estimation of stormwater pollutant loads using land use based models has been widely used for establishing regulations and management practices. This approach requires land use information to assign the imperviousness or runoff coefficients (RC) and event mean concentrations (EMCs) for the pollutants of interest. This simplistic approach is useful to estimate the total mass emissions. However, different research groups have used various parameters based upon similar data sources, and there are very few validations using actual field data. This study compares the assumptions, methodologies and results of several, independent modelling efforts, and functions as a quality and sensitivity study of the methodologies. The similarity or differences of the various model results serve as a qualitative indicator of the state of art for this type of stormwater modelling.


2020 ◽  
Vol 61 (4) ◽  
pp. 313-327
Author(s):  
Akıner Ernur

The Büyük Melen river in the Melen Basin meets Istanbul's drinking water needs. Protecting the basin against nutrient pollution is vital in this regard as well. This study focuses on the best possible management practice (BMPs) in the Melen Basin to reduce the export of nutrients from the agricultural areas. A region comprising industrial, farming, and residential zones is the Melen basin. There is a forecast of global climate change in Turkey, and scientists and also governors must know which areas are no longer farming zones and which will be more appropriate for agriculture. Turkey's territory is a high-risk desertification area. In Melen Basin, the soil type and land use properties have been determined and mapped using GIS and Soil and Water Assessment Tool (SWAT). Buffer BMP filter strips can be used effectively for nutrient protection that can be carried from residential areas and motorways by runoff. The region in the basin is steep, and its clay and sandy soil structures are ideal for parallel terraces, grade stabilization, strip, and contour cultivation. Unless the ground can not retain or store water, the soil can undergo sudden floods, causing an erosion of the soil's productive surface layer. When we protect the land, this condition is reduced. The land type and land use mapping should be drawn up as soon as possible for the remaining Turkish basins by scientific methods. This research is intended to be an illustration for researches on other agricultural basins in Turkey and the world for this reason.


2021 ◽  
Author(s):  
◽  
Leo Mercer

<p>This research explores landowner preferences for various land use options suitable for Māori land in Te Tairāwhiti, on the East Coast of the North Island of Aotearoa-New Zealand (henceforth Aotearoa). A particular emphasis is placed on the applicability and feasibility of native forest carbon farming within the New Zealand Emissions Trading Scheme (NZ ETS) and opportunities, barriers and risks associated with this land use. Alongside this focus, is a wider investigation into the socio-cultural, environmental and economic co-benefits Māori landowners associate with traditional and emerging land uses in Te Tairāwhiti. This study uses a transformative research approach that is rooted in the spirit of kaupapa Māori research.  Some 90 percent of Māori land in Te Tairāwhiti has severe limitations which restrict land use options to plantation forestry or pastoral farming for most landowners. A response to these limitations, and a land development option favoured by government agencies, and the academy, is for ‘unproductive’ Māori land to be retired into permanent native forest carbon sinks – a solution frequently proffered as a positive means to address national climate change commitments and local environmental and socioeconomic issues. Whilst these objectives, and the land use preferences of Māori seemingly converge, the wider history of land loss and alienation influences perceptions of fairness and equity for Māori landowners who may feel pressured by the lack of attractive land use options to establish permanent carbon sinks, which can effectively constrain land use options for future generations.  Through case study analysis of a Māori sheep and beef farming incorporation participating in the NZ ETS, this study suggests an economic case for carbon farming in Te Tairāwhiti. However, institutional and socio-cultural barriers hinder the participation of Māori landowners in the NZ ETS. The second focus of this thesis has been an investigation into how native forest carbon farming is viewed when compared to other novel and existing land uses suitable for Māori land in the Waiapu catchment (a highly erodible catchment in Te Tairāwhiti). Interviews with key informants were employed to curate a set of land use options for Māori landowners to appraise, using multi-criteria analysis, at two wānanga. Four land use models were created for appraisal by 16 Māori landowner participants. The strength of association between a co-benefit and a land use was collectively deliberated upon in each of these models, and ratings were assigned to reflect this association. These ratings have aided in assessing the wider value of land uses for Māori in the region.   The results from this research indicate an overwhelming preference for native forests when compared to other suitable land uses. Native forests are most closely associated with environmental co-benefits (erosion control, water quality, biodiversity and withstanding and limiting climate change) and social and cultural co-benefits (skills development, employment, reconnecting with the land, and self-determination/autonomy). The strong performance of native forestry stands in stark contrast with other land uses under consideration such as exotic forestry (Pinus radiata within the study scenario) and sheep and beef farming which occupy the majority of ‘productive’ land in Te Tairāwhiti. Exotic forestry and sheep and beef farming are associated with few benefits beyond employment and skills development. There is also a clear perception in the quantitative and qualitative data that these uses disconnect Māori landowners from their land and reduce the ability of communities to be self-reliant.   Interestingly, other novel land uses under consideration such as perennial horticulture (including blueberries, macadamia nuts and apples), medicinal cannabis and hemp, and hunting and tourism were also valued more than exotic forestry and sheep and beef farming. These results indicate that existing land uses, sometimes implemented without express input from local communities, are now the least preferred land uses. In addition, novel and untested land uses such as medicinal cannabis and hemp, which do not exist at any scale in the region, are preferred over existing uses - even when there is scant evidence of success at any scale.   These results push back at the prevailing Pākehā dominated orthodoxy, which has existed from the early days of colonisation and holds that monoculture land uses, for profit above all else, are best suited to the land and the people. It is clear, from this study, that Māori landowners wish to move back to a vibrant multi-faceted land use regime – exemplified by diversity over homogeneity – that characterised the pre-colonisation Māori economy. This research accordingly introduces and explores a value articulating process that increases understanding of the aspirations and values of Māori landowners, and can assist Māori in progressing their land use futures.</p>


Sign in / Sign up

Export Citation Format

Share Document