scholarly journals Case study of extracting soil and land use maps to determine agricultural best management practices that can be applied to prevent erosion and fertile soil loss

2020 ◽  
Vol 61 (4) ◽  
pp. 313-327
Author(s):  
Akıner Ernur

The Büyük Melen river in the Melen Basin meets Istanbul's drinking water needs. Protecting the basin against nutrient pollution is vital in this regard as well. This study focuses on the best possible management practice (BMPs) in the Melen Basin to reduce the export of nutrients from the agricultural areas. A region comprising industrial, farming, and residential zones is the Melen basin. There is a forecast of global climate change in Turkey, and scientists and also governors must know which areas are no longer farming zones and which will be more appropriate for agriculture. Turkey's territory is a high-risk desertification area. In Melen Basin, the soil type and land use properties have been determined and mapped using GIS and Soil and Water Assessment Tool (SWAT). Buffer BMP filter strips can be used effectively for nutrient protection that can be carried from residential areas and motorways by runoff. The region in the basin is steep, and its clay and sandy soil structures are ideal for parallel terraces, grade stabilization, strip, and contour cultivation. Unless the ground can not retain or store water, the soil can undergo sudden floods, causing an erosion of the soil's productive surface layer. When we protect the land, this condition is reduced. The land type and land use mapping should be drawn up as soon as possible for the remaining Turkish basins by scientific methods. This research is intended to be an illustration for researches on other agricultural basins in Turkey and the world for this reason.

2008 ◽  
Vol 3 (1) ◽  
pp. 126-138 ◽  
Author(s):  
Rebecca A Larson ◽  
Steven I Safferman

This article reviews and provides evaluation guidelines for six major storm water best management practices including bioretention areas, grassed swales/filter strips, infiltration trenches, porous pavement, rain barrels and wet detention ponds. A detailed table allows for quick and easy design comparisons, including a separate table which allows for site specific cost comparisons. A logic diagram is provided as a basic tool for screening the most feasible management practice.


Author(s):  
Cristiano Andre Pott ◽  
Nicola Fohrer

Water pollution by nitrogen originates at diffuse and point sources. In surface aquatic systems, nitrate is one of the most problematic forms of nitrogen, causing phytoplankton and macrophyte growth and consequently water eutrophication. This study evaluated whether the Soil and Water Assessment Tool (SWAT) model can simulate nitrate load in a rural watershed in daily and monthly time increments. The study investigated 462 km² of the upper part of the Stör catchment, a typical rural lowland catchment located in Northern Germany. The results showed that simulations of nitrate load at monthly increments are better predictors of observed data than daily simulations. The most effective practices to minimize the NO3-N load were the reduction of nitrogen fertilizer application and the increasing of conservation areas, such as field filter strips.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1636
Author(s):  
Thanh N. Le ◽  
Duy X. Tran ◽  
Thuong V. Tran ◽  
Sangay Gyeltshen ◽  
Tan V. Lam ◽  
...  

Saltwater intrusion risk assessment is a foundational step for preventing and controlling salinization in coastal regions. The Vietnamese Mekong Delta (VMD) is highly affected by drought and salinization threats, especially severe under the impacts of global climate change and the rapid development of an upstream hydropower dam system. This study aimed to apply a modified DRASTIC model, which combines the generic DRASTIC model with hydrological and anthropogenic factors (i.e., river catchment and land use), to examine seawater intrusion vulnerability in the soil-water-bearing layer in the Ben Tre province, located in the VMD. One hundred and fifty hand-auger samples for total dissolved solids (TDS) measurements, one of the reflected salinity parameters, were used to validate the results obtained with both the DRASTIC and modified DRASTIC models. The spatial analysis tools in the ArcGIS software (i.e., Kriging and data classification tools) were used to interpolate, classify, and map the input factors and salinization susceptibility in the study area. The results show that the vulnerability index values obtained from the DRASTIC and modified DRASTIC models were 36–128 and 55–163, respectively. The vulnerable indices increased from inland districts to coastal areas. The Ba Tri and Binh Dai districts were recorded as having very high vulnerability to salinization, while the Chau Thanh and Cho Lach districts were at a low vulnerability level. From the comparative analysis of the two models, it is obvious that the modified DRASTIC model with the inclusion of a river or canal network and agricultural practices factors enables better performance than the generic DRASTIC model. This enhancement is explained by the significant impact of anthropogenic activities on the salinization of soil water content. This study’s results can be used as scientific implications for planners and decision-makers in river catchment and land-use management practices.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2601
Author(s):  
Holger Rupp ◽  
Nadine Tauchnitz ◽  
Ralph Meissner

As a result of global climate change, heavy rainfall events and dry periods are increasingly occurring in Germany, with consequences for the water and solute balance of soils to be expected. The effects of climate change on nitrogen and carbon leaching were investigated using 21 non-weighable manually filled lysimeters of the UFZ lysimeter facility Falkenberg, which have been managed since 1991 according to the principles of the best management practices and organic farming. Based on a 29-year dataset (precipitation, evaporation, leachate, nitrate and dissolved organic carbon concentrations), the lysimeter years 1995/96, 2018/19, and 2003/04 were identified as extremely dry years. Under the climatic conditions in northeastern Germany, seepage fluxes were disrupted in these dry years. The reoccurrence of seepage was associated with exceptionally high nitrogen concentrations and leaching losses, which exceeded the current drinking water limits by many times and may result in a significant risk to water quality. In contrast, increased DOC leaching losses occurred primarily as a result of increased seepage fluxes.


2005 ◽  
Vol 29 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Amanda L. Husak ◽  
Stephen C. Grado ◽  
Steven H. Bullard ◽  
Steverson O. Moffat

Abstract Passage of the Clean Water Act (CWA) of 1972 prompted states to invest significant resources to develop programs to control nonpoint source (NPS) pollution from forestry and other activities. Forestry-related agencies and organizations have since developed silvicultural best managementpractice (BMP) guidelines to reduce NPS pollution, maintain stream integrity, and meet state water quality standards. To determine the effectiveness and implementation level of best management practices (BMP) on public and private forestland, states further developed and implemented theirBMP compliance monitoring programs. This study documents the similarities and differences in efforts, methods, resources, and expenditures among BMP compliance monitoring programs across the 13 southern states. 29(1):48–52.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 576 ◽  
Author(s):  
Adrián López-Ballesteros ◽  
Javier Senent-Aparicio ◽  
Raghavan Srinivasan ◽  
Julio Pérez-Sánchez

Best management practices (BMPs) provide a feasible solution for non-point source pollution problems. High sediment and nutrient yields without retention control result in environmental deterioration of surrounding areas. In the present study, the soil and water assessment tool (SWAT) model was developed for El Beal watershed, an anthropogenic and ungauged basin located in the southeast of Spain that drains into a coastal lagoon of high environmental value. The effectiveness of five BMPs (contour planting, filter strips, reforestation, fertilizer application and check dam restoration) was quantified, both individually and in combination, to test their impact on sediment and nutrient reduction. For calibration and validation processes, actual evapotranspiration (AET) data obtained from a remote sensing dataset called Global Land Evaporation Amsterdam Model (GLEAM) were used. The SWAT model achieved good performance in the calibration period, with statistical values of 0.78 for Kling–Gupta efficiency (KGE), 0.81 for coefficient of determination (R2), 0.58 for Nash–Sutcliffe efficiency (NSE) and 3.9% for percent bias (PBIAS), as well as in the validation period (KGE = 0.67, R2 = 0.83, NS = 0.53 and PBIAS = −25.3%). The results show that check dam restoration is the most effective BMP with a reduction of 90% in sediment yield (S), 15% in total nitrogen (TN) and 22% in total phosphorus (TP) at the watershed scale, followed by reforestation (S = 27%, TN = 16% and TP = 20%). All effectiveness values improved when BMPs were assessed in combination. The outcome of this study could provide guidance for decision makers in developing possible solutions for environmental problems in a coastal lagoon.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 235 ◽  
Author(s):  
Zuoda Qi ◽  
Gelin Kang ◽  
Xiaojin Wu ◽  
Yuting Sun ◽  
Yuqiu Wang

Best management practices (BMPs) are an effective way to control water pollution. However, identification of the optimal distribution and cost-effect of BMPs provides a great challenge for watershed policy makers. In this paper, a semi-distributed, low-data, and robust watershed model, the Revised Generalized Watershed Loading Function (RGWLF), is improved by adding the pollutant attenuation process in the river channel and a bank filter strips reduction function. Three types of pollution control measures—point source wastewater treatment, bank filter strips, and converting farmland to forest—are considered, and the cost of each measure is determined. Furthermore, the RGWLF watershed model is coupled with a widely recognized multi-objective optimization algorithm, the non-dominated sorting genetic algorithm II (NSGAII), the combination of which is applied in the Luanhe watershed to search for spatial BMPs for dissolved nitrogen (DisN). Fifty scenarios were finally selected from numerous possibilities and the results indicate that, at a minimum cost of 9.09 × 107 yuan, the DisN load is 3.1 × 107 kg and, at a maximum cost of 1.77 × 108 yuan, the total dissolved nitrogen load is 1.31 × 107 kg; with the no-measures scenario, the DisN load is 4.05 × 107 kg. This BMP optimization model system could assist decision-makers in determining a scientifically comprehensive plan to realize cost-effective goals for the watershed.


Sign in / Sign up

Export Citation Format

Share Document