scholarly journals The Ankle Energetic Effect of Functional Insoles on Walking

Author(s):  
Maki Nagai ◽  
Masayuki Tazawa ◽  
Takahumi Kanaya ◽  
Hironori Arii ◽  
Yoko Ibe ◽  
...  

Abstract Background:Although insoles made of various materials and shapes have been developed to improve performance in sport activities, few objective evaluations on their effectiveness have been conducted. We investigated the effect of insoles supporting the cuboid bone and anterior part of the calcaneus in healthy individuals.Methods:The subjects included 18 healthy males and females. They walked in standardized shoes with a flat insole (a flat insole made of polyurethane without an arched shape on the surface) and a functional insole (made of carbon and supporting the cuboid and anterior part of the calcaneus). We used a three-dimensional motion analysis device and a force plate to analyze gait and quantitatively compared the effect of functional insoles.Results:There was no difference in the parameters of gait analysis (walking speed, cadence, step length, stride length) between flat insoles and functional insoles. The functional insoles reduced ankle power without reducing walking ability. A comparison between Group A (n = 7), in which the left-right difference in ankle power was more than 20%, and Group B (n = 11), in which the left-right difference in ankle power was less than 20%, indicated that the use of functional insoles reduces the left-right difference of ankle power in the group with a larger difference in power.Conclusion:We believe that the use of functional insoles reduced ankle power without reducing walking ability and equalized left-right power. It may therefore reduce the burden on the muscles of the unilateral lower limbs and improve sport performance.Trial registration:The medical research ethics review committee for individuals at Gunma University (study number HS2017-229) Registered 20 febluary 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000034362

2016 ◽  
Vol 16 (02) ◽  
pp. 1650001
Author(s):  
M. M. XUEMEI PIAO ◽  
M. D. LUAN XUE ◽  
M. D. SHUYUN JIANG ◽  
M. D. JIANDONG HU ◽  
M. M. GUOLING LI

The present study aimed to investigate the potential clinical value of three-dimensional gait analysis (3D-GA) system in evaluating ankylosing spondylitis (AS). Thirty-one patients with AS from September 2010 to August 2011, with 32 involved and 30 uninvolved lower limbs, were enrolled. Data of spatio-temporal parameters (step and stride length, velocity and cadence), time parameters (stance, single stance, double stance and swing phases) and kinematics parameters associated with spinal mobility (spinal lateral bending, spinal forward bending and spinal rotation) were analyzed by 3D-GA system, as well as curative effects of biologic therapy. Compared with normal values, AS patients showed decreased step and stride length ([Formula: see text]), increased cadence, longer swing and single stance phases ([Formula: see text]) and shorter stance and double stance phases ([Formula: see text]) in uninvolved lower limbs. In AS patients, reduced step length, stride length, velocity and cadence, shorter swing and single stance phases, longer stance and double stance phases ([Formula: see text]), increased lateral bending angle and decreased spinal rotation ([Formula: see text]) were detected by 3D-GA in involved lower limbs compared with uninvolved ones. In the 16 patients with decreased levels of ESR and CRP and improved ASAS scores after biology therapy, increased step length, stride length, velocity and cadence of the involved lower limbs were detected by 3D-GA ([Formula: see text]), as well as improved spinal mobility ([Formula: see text]). Hence, we concluded that 3D-GA has great potential value of clinical application for assessing and monitoring AS.


2010 ◽  
Vol 34 (4) ◽  
pp. 399-410 ◽  
Author(s):  
Natalie Vanicek ◽  
Siobhan Catherine Strike ◽  
Lars McNaughton ◽  
Remco Polman

Stair walking relies on concentric contraction of the ankle plantarflexor and knee extensor muscles, which are either absent or weakened in transtibial amputees. As a result the risk of falling is increased in this population. The aim of this study was to compare the gait patterns of transtibial amputee fallers and non-fallers during stair ascent. Eleven participants (fallers = 6; non-fallers = 5) walked along a 3-m walkway and ascended a three-step staircase with handrails, at their self-selected pace, while three-dimensional kinematic data were collected from the lower limbs. A force plate was embedded into the first step and kinetic data were measured for the intact lead limb only. The fallers walked significantly faster (p = 0.00) and exhibited less hip flexion (p = 0.05) and less anterior pelvic tilt (p = 0.04) compared to the non-fallers. The fallers had significantly greater first and second peak vertical ground reaction force (GRF) on the intact limb than the non-fallers (p = 0.05 and p = 0.01, respectively) contributing to the significantly larger ankle (p = 0.02) and hip moments (p = 0.04). These findings suggested the amputee non-fallers performed mechanically demanding tasks more cautiously. Two of the participants self-selected a ‘step to’ gait pattem, ascending one step at a time. This may be considered a compensatory mechanism for the lack of ankle mobility and functional muscle performance in these two transtibial amputees.


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Richa Gupta ◽  
Piyush Kumar ◽  
D. P. Singh ◽  
Arvind Kumar Chauhan ◽  
Kamal Sahni

INTRODUCTION: Cervical cancer is the second most frequent cancer among Indian women. Radiotherapy is the cornerstone of treatment in all its stages. Three-dimensional conformal radiotherapy (3DCRT) combines multiple radiation fields to deliver precise dose of radiation to the affected area. Tailoring each of the radiation fields to focus on the tumor delivers a high dose of radiation to the tumor and avoids nearby healthy tissue. The present study is done to compare conventional radiotherapy versus 3DCRT in cancer cervix for compliance, clinical response and toxicity. MATERIAL AND METHODS: Fifty patients were enrolled and randomised into two radiotherapy plans with radical intent - Group A treated by conventional radiotherapy and group B treated by 3DCRT. Concurrent cisplatin was delivered on weekly (35mg/m2) or tri-weekly (75mg/m2) basis during external beam Radiotherapy and was followed by High Dose Radiotherapy Brachytherapy. Clinical response and complication assessment were evaluated.Collected data was analyzed using standard statistical methods and softwares to calculate level of significance using “p” value by chi square test. RESULTS: In this study mean age of the patients was 48 years (26-67 years). The anemia was the most common side effect seen in both groups (96% vs 88%, p=0.29). Neutropenia was more in group B (36% vs 44%, p= 0.56). Lower GI toxicity was seen only in patients in group A (20% vs 0%, p=0.018). In follow up there were no significant early rectal and bladder reactions in both groups and 2 patients in each group had late rectal reactions of grade I and II (p= 0.312). No significant skin, bladder and small intestinal toxicity were seen in both groups. CONCLUSION: Conventional radiotherapy gives equally efficacious response though accompanied by toxicities which were acceptable.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Asiyeh Shojaee ◽  
Firooze Ronnasian ◽  
Mahdiyeh Behnam ◽  
Mansoor Salehi

AbstractBackgroundSirenomelia, also called mermaid syndrome, is a rare lethal multi-system congenital deformity with an incidence of one in 60,000–70,000 pregnancies. Sirenomelia is mainly characterized by the fusion of lower limbs and is widely associated with severe urogenital and gastrointestinal malformations. The presence of a single umbilical artery derived from the vitelline artery is the main anatomical feature distinguishing sirenomelia from caudal regression syndrome. First-trimester diagnosis of this disorder and induced abortion may be the safest medical option. In this report, two cases of sirenomelia that occurred in an white family will be discussed.Case presentationWe report two white cases of sirenomelia occurring in a 31-year-old multigravid pregnant woman. In the first pregnancy (18 weeks of gestation) abortion was performed, but in the third pregnancy (32 weeks) the stillborn baby was delivered by spontaneous vaginal birth. In the second and fourth pregnancies, however, she gave birth to normal babies. Three-dimensional ultrasound imaging showed fusion of the lower limbs. Neither she nor any member of her family had a history of diabetes. In terms of other risk factors, she had no history of exposure to teratogenic agents during her pregnancy. Also, her marriage was non-consanguineous.ConclusionThis report suggests the existence of a genetic background in this mother with a Mendelian inheritance pattern of 50% second-generation incidence in her offspring.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2619
Author(s):  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Tomoya Ishida ◽  
Yuki Saito ◽  
...  

Recently, treadmills equipped with a lower-body positive-pressure (LBPP) device have been developed to provide precise body weight support (BWS) during walking. Since lower limbs are covered in a waist-high chamber of an LBPP treadmill, a conventional motion analysis using an optical method is impossible to evaluate gait kinematics on LBPP. We have developed a wearable-sensor-based three-dimensional motion analysis system, H-Gait. The purpose of the present study was to investigate the effects of BWS by a LBPP treadmill on gait kinematics using an H-Gait system. Twenty-five healthy subjects walked at 2.5 km/h on a LBPP treadmill under the following three conditions: (1) 0%BWS, (2) 25%BWS and (3) 50%BWS conditions. Acceleration and angular velocity from seven wearable sensors were used to analyze lower limb kinematics during walking. BWS significantly decreased peak angles of hip adduction, knee adduction and ankle dorsiflexion. In particular, the peak knee adduction angle at the 50%BWS significantly decreased compared to at the 25%BWS (p = 0.012) or 0%BWS (p < 0.001). The present study showed that H-Gait system can detect the changes in gait kinematics in response to BWS by a LBPP treadmill and provided a useful clinical application of the H-Gait system to walking exercises.


Author(s):  
Ruta Jakušonoka ◽  
Zane Pavāre ◽  
Andris Jumtiņš ◽  
Aleksejs Smolovs ◽  
Tatjana Anaņjeva

Abstract Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years), 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05). The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.


2017 ◽  
Vol 17 (06) ◽  
pp. 1750092
Author(s):  
MARYAM HAJIZADEH ◽  
ALIREZA HASHEMI OSKOUEI ◽  
FARZAN GHALICHI ◽  
GISELA SOLE

Analysis of knee kinematics and ground reaction forces (GRFs) is widely used to determine compensatory mechanisms of people with anterior cruciate ligament deficiency (ACLD). However, the practicality of the measurements is subject to their reliability during different trials. This study aims to determine the reliability and repeatability of knee joint rotations and GRFs in people with ACLD during stair ascent. Eight participants with unilateral ACL-deficient knees performed five trials of stair ascent with each leg. The movements were captured by VICON motion analysis system, and GRF components were recorded using force plate. Three-dimensional tibiofemoral joint rotations were calculated. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of multiple correlation (CMC) were calculated ACL-deficient legs showed lower absolute reliability during swing ([Formula: see text]–6.4) than stance phase ([Formula: see text]–2.2) for knee joint rotations. Moderate to high average measure ICCs (0.59–0.98), relative reliability, were achieved for injured and uninjured sides. The results also demonstrated high repeatability for the knee joint rotation ([Formula: see text]–0.97) and GRF ([Formula: see text]–0.99). The outcomes of this study confirmed the consistency and repeatability of the knee joint rotations and GRFs in ACL-deficient subjects. Additionally, ACL-deficient legs exhibited similar levels of reliability and repeatability compared to contralateral legs.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1343
Author(s):  
Sebastian Fudickar ◽  
Jörn Kiselev ◽  
Christian Stolle ◽  
Thomas Frenken ◽  
Elisabeth Steinhagen-Thiessen ◽  
...  

This article covers the suitability to measure gait-parameters via a Laser Range Scanner (LRS) that was placed below a chair during the walking phase of the Timed Up&Go Test in a cohort of 92 older adults (mean age 73.5). The results of our study demonstrated a high concordance of gait measurements using a LRS in comparison to the reference GAITRite walkway. Most of aTUG’s gait parameters demonstrate a strong correlation coefficient with the GAITRite, indicating high measurement accuracy for the spatial gait parameters. Measurements of velocity had a correlation coefficient of 99%, which can be interpreted as an excellent measurement accuracy. Cadence showed a slightly lower correlation coefficient of 96%, which is still an exceptionally good result, while step length demonstrated a correlation coefficient of 98% per leg and stride length with an accuracy of 99% per leg. In addition to confirming the technical validation of the aTUG regarding its ability to measure gait parameters, we compared results from the GAITRite and the aTUG for several parameters (cadence, velocity, and step length) with results from the Berg Balance Scale (BBS) and the Activities-Specific Balance Confidence-(ABC)-Scale assessments. With confidence coefficients for BBS and velocity, cadence and step length ranging from 0.595 to 0.798 and for ABC ranging from 0.395 to 0.541, both scales demonstrated only a medium-sized correlation. Thus, we found an association of better walking ability (represented by the measured gait parameters) with better balance (BBC) and balance confidence (ABC) overall scores via linear regression. This results from the fact that the BBS incorporates both static and dynamic balance measures and thus, only partly reflects functional requirements for walking. For the ABC score, this effect was even more pronounced. As this is to our best knowledge the first evaluation of the association between gait parameters and these balance scores, we will further investigate this phenomenon and aim to integrate further measures into the aTUG to achieve an increased sensitivity for balance ability.


2021 ◽  
Vol 25 (1) ◽  
pp. 30-37
Author(s):  
Sarah Klopp Christensen ◽  
Aaron Wayne Johnson ◽  
Natalie Van Wagoner ◽  
Taryn E. Corey ◽  
Matthew S. McClung ◽  
...  

Irish dance has evolved in aesthetics that lead to greater physical demands on dancers' bodies. Irish dancers must land from difficult moves without letting their knees bend or heels touch the ground, causing large forces to be absorbed by the body. The majority of injuries incurred by Irish dancers are due to overuse (79.6%). The purpose of this study was to determine loads on the body of female Irish dancers, including peak force, rise rate of force, and impulse, in eight common Irish hard shoe and soft shoe dance movements. It was hypothesized that these movements would produce different ground reac- tion force (GRF) characteristics. Sixteen female Irish dancers were recruited from the three highest competitive levels. Each performed a warm-up, reviewed the eight movements, and then performed each movement three times on a force plate, four in soft shoes and four in hard shoes. Ground reaction forces were measured using a three-dimensional force plate recording at 1,000 Hz. Peak force, rise rate, and vertical impulse were calculated. Peak forces normalized by each dancer's body weight for each of these variables were significantly different between move- ments and shoe types [F(15, 15)= 65.4, p < 0.01; F(15, 15) = 65.0, p < 0.01; and F(15, 15) = 67.4, p < 0.01, respectively]. The variable years of experience was not correlated with peak force, rise rate, or impulse (p > 0.40). It is concluded that there was a large range in GRF characteristics among the eight movements studied. Understanding the force of each dance step will allow instructors to develop training routines that help dancers adapt gradually to the high forces experienced in Irish dance training and competitions, thereby limiting the potential for overuse injuries.


Sign in / Sign up

Export Citation Format

Share Document