scholarly journals Genetic Variability Screening of the Leptolyngbya Boryana with Expressed ChrR Gene for the Biotransformation of Cr (VI) to Cr (III) Reduction

Author(s):  
Ajit Pratap Singh Yadav ◽  
Vinay Dwivedi ◽  
Satyendra Kumar

Abstract Chromium is well known pollutant for its mutagenicity, and carcinogenicity in humans. Excessive uses of chromium in leather tanning industries, stainless-steel production, and wood preservatives have resulted as chromium contamination in soil and water. This investigation indicates the effective use of Leptolyngbya boryana as an eco-friendly option to overcome Chromium (VI) toxicity in tannery effluents. The main objective of this research was to find out ChrR gene and its variability in the context of Cr (VI) stress. This is a novel study in the relation of Leptolyngbya boryana. Industrial polluted soil samples were collected and processed according to the standard protocols for ChrR variation and 16S rRNA gene. DNA was isolated and amplified through PCR. Amplified DNA was sequenced and aligned with the known sequences. In this study a strong co-relation was established in the nucleotide sequences of ChrR and 16S rRNA genes. MIC was determined for Cr (VI) and pure strains of Leptolyngbya boryana were identified and isolated from soil. In the present study presence of ChrR gene variability was recorded in Leptolyngbya boryana which is a cyanobacterium in the soil of tannery effluent under Cr (VI) stressed condition and its gene variability was confirmed by sequencing. We can conclude that Leptolyngbya boryana strain could be eco-friendly option to overcome Chromium (VI) toxicity in tannery effluents.

2021 ◽  
Vol 30 ◽  
pp. 05007
Author(s):  
Anastasia Nechayeva ◽  
Konstantin Boyarshin ◽  
Olga Bespalova ◽  
Violetta Klyueva ◽  
Olesya Makanina ◽  
...  

The main goal of the work was to assess variability of 16S rRNA gene sequence within the nitrifying bacterial genus Nitrosomonas to find specific sequences for its detection. To achieve it, we had to find and to assess sequences that are highly conservative on the level of the genus and to find and to assess sequences variable on the level of genus but conserved on the level of species. In the SILVA database of ribosomal RNA sequences, 231 sequences of 16S rRNAs of bacteria of the genus Nitrosomonas were collected, of which were sorted 132 sequences by length from 1400 to 1541 (full-sized gene) nucleotides. We conducted an analysis of the taxon-specificity of sequences conserved at the genus level. More than a hundred full matches were found by the BLAST program in the nr database with other genera of the same and other families. So, in Nitrosomonas 16S rRNA gene are present some highly conservative regions, but they are not genus-specific due to high coincidence with other genera. Wherein, a variable region 994-1041 is highly species-specific for the species N. eutropha. Generally, the sequence of 994-1041 region of Nitrosomonas 16S rRNA genes tends to be clustered, being very close between some species.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


2020 ◽  
Vol 139 ◽  
pp. 161-174
Author(s):  
R Palmer ◽  
GTA Fleming ◽  
S Glaeser ◽  
T Semmler ◽  
A Flamm ◽  
...  

During 1992 and 1993, a bacterial disease occurred in a seawater Atlantic salmon Salmo salar farm, causing serious mortalities. The causative agent was subsequently named as Oceanivirga salmonicida, a member of the Leptotrichiaceae. Searches of 16S rRNA gene sequence databases have shown sequence similarities between O. salmonicida and uncultured bacterial clones from the digestive tracts of marine mammals. In the current study, oral samples were taken from stranded dolphins (common dolphin Delphinus delphis, striped dolphin Stenella coeruleoalba) and healthy harbour seals Phoca vitulina. A bacterium with growth characteristics consistent with O. salmonicida was isolated from a common dolphin. The isolate was confirmed as O. salmonicida, by comparisons to the type strain, using 16S rRNA gene, gyrB, groEL, and recA sequence analyses, average nucleotide identity analysis, and MALDI-TOF mass spectrometry. Metagenomic analysis indicated that the genus Oceanivirga represented a significant component of the oral bacterial microbiomes of the dolphins and seals. However, sequences consistent with O. salmonicida were only found in the dolphin samples. Analyses of marine mammal microbiome studies in the NCBI databases showed sequences consistent with O. salmonicida from the common dolphin, striped dolphin, bottlenose dolphin Tursiops truncatus, humpback whale Megaptera novaeangliae, and harbour seal. Sequences from marine environmental studies in the NCBI databases showed no sequences consistent with O. salmonicida. The findings suggest that several species of marine mammals are natural hosts of O. salmonicida.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 µmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Sign in / Sign up

Export Citation Format

Share Document