scholarly journals Partial Relay Selection for Secure Cooperative NOMA Networks

Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate physical layer security of multi-relay non-orthogonal multiple access (NOMA) networks with partial relay selection considering decode-and-forward (DF) and amplify-and-forward (AF) protocols. We propose a partial relay scheme aiming to select the best relay based on the highest signal-to-noise-ratio (SNR) of the first link. We derive new exact and asymptotic expressions for strictly positive secrecy capacity (SPSC) and secrecy outage probability (SOP) considering Rayleigh fading channels. Numerical results demonstrate that AF and DF provide almost a similar secrecy performance. Moreover, they prove that partial relay selection improves SPSC and reduces SOP when the relay-cluster is closer to the legitimate receiver.

2021 ◽  
Author(s):  
Nesrine Zaghdoud ◽  
Adel Ben Mnaouer ◽  
Hatem Boujemaa ◽  
Farid Touati

Abstract Although the progress in understanding 5G and beyond techniques such as Non-Orthogonal Multiple Access (NOMA) and full-duplex techniques has been overwhelming, still analyzing the security aspects of such systems under different scenarios and settings is an important concern that needs further exploration. In particular, when considering fading in wiretap channels and scenarios, achieving secrecy has posed many challenges. In this context, we propose to study the physical layer security (PLS) of cooperative NOMA (C-NOMA) system using the general fading distribution κ - μ. This distribution facilitates mainly the effect of light-of-sight as well as multipath fading. It also includes multiple distributions as special cases like: Rayleigh, Rice, Nakagami-m which help to understand the comportment of C-NOMA systems under different fading parameters. The use of Half-Duplex and Full-Duplex communication is also investigated for both Amplify-and-forward (AF) and Decode-and-Forward (DF) relaying protocols. To characterize the secrecy performance of the proposed C-NOMA systems, closed form expressions of the Secrecy Outage Probability (SOP) and the Strictly Positive Secrcey Capacity (SPSC) metrics for the strong and weak users are given for high signal-to-noise ratio (SNR) due to the intractable nature of the exact expressions. Based on the analytical analysis, numerical and simulation results are given under different network parameters.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 385 ◽  
Author(s):  
Tan-Phuoc Huynh ◽  
Pham Ngoc Son ◽  
Miroslav Voznak

In this paper, an underlay cooperative cognitive network using a non-orthogonal multiple access (UCCN-NOMA) system is investigated, in which the intermediate multiple relays help to decode and forward two signals x 1 and x 2 from a source node to two users D1 and D2, respectively, under wiretapping of an eavesdropper (E). We study the best relay selection strategies by three types of relay selection criteria: the first and second best relay selection is based on the maximum channel gain of the links R i -D 1 , R i -D2, respectively; the third one is to ensure a minimum value of the channel gains from the R i -E link. We analyze and evaluate the secrecy performances of the transmissions x 1 and x 2 from the source node to the destination nodes D1, D2, respectively, in the proposed UCCN-NOMA system in terms of the secrecy outage probabilities (SOPs) over Rayleigh fading channels. Simulation and analysis results are presented as follows. The results of the (sum) secrecy outage probability show that proposed scheme can realize the maximal diversity gain. The security of the system is very good when eavesdropper node E is far from the source and cooperative relay. Finally, the theoretical analyses are verified by performing Monte Carlo simulations.


2014 ◽  
Vol 945-949 ◽  
pp. 2262-2265
Author(s):  
Hong Zhang ◽  
Dong Lai Hao ◽  
Hai Yang Ding

In this Letter, assuming a Nakagami-m fading scenario, closed-form asymptotic expressions for the average symbol error probability (ASEP) of dual-hop amplify-and-forward (AF) cooperative systems with partial relay selection are derived. Based on these expressions, the diversity order is obtained and insightful conclusions are drawn. Numerical results are plotted and the asymptotic curves match very well in the medium and high signal-to-noise ratio (SNR) regions with those obtained by simulations.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Kyu-Sung Hwang

We study the secrecy outage probability of the amplify-and-forward (AF) relaying protocol, which consists of one source, one destination, multiple relays, and multiple eavesdroppers. In this system, the aim is to transmit the confidential messages from a source to a destination via the selected relay in presence of eavesdroppers. Moreover, partial relay selection scheme is utilized for relay selection based on outdated channel state information where only neighboring channel information (source-relays) is available and passive eavesdroppers are considered where a transmitter does not have any knowledge of eavesdroppers’ channels. Specifically, we offer the exact secrecy outage probability of the proposed system in a one-integral form as well as providing the asymptotic secrecy outage probability in a closed-form. Numerical examples are given to verify our provided analytical results for different system conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Deng ◽  
Chao Li ◽  
Lisheng Fan ◽  
Xin Liu ◽  
Fasheng Zhou

This paper studies the impacts of antenna selection algorithms in decode-and-forward (DF) cooperative nonorthogonal multiple access (NOMA) networks, where the secure information from the relay can be overheard by an eavesdropper in the networks. In order to ensure the secure transmission, an optimal antenna selection algorithm is proposed to choose one best relay’s antenna to assist the secure transmission. We study the impact of antenna selection on the system secure communication through deriving the analytical expression of the secrecy outage probability along with the asymptotic expression in the high regime of signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER). From the analytical and asymptotic expressions, we find that the system secure performance is highly dependent on the system parameters such as the number of antennas at the relay, SNR, and MER. In particular, the secrecy diversity order of the system is equal to the antenna number, when the interference from the second user is limited.


2021 ◽  
Author(s):  
Sajad Hatamnia ◽  
Mahdi Morafah ◽  
Bill Lin

<div> <div> <div> <p>In the last decade, multi-hop cooperation has evolved bringing several advantages including coverage improvement, more reliability of wireless links, and power consumption reduction. Still, its application has raised several challenges, such as the need for secure transmission at each hop, algorithms to perform relay selection and the accurate models to facilitate performance analysis. This paper addresses the problem of physical layer (PHY) security in a multi-hop wireless cooperative network, where communication at each hop is assisted by multiple relays forming a cluster, each cluster being surrounded by multiple eavesdroppers which together may tap transmissions from both the source and the relays. The main focus of the study is on analyzing the benefits of various relay selection schemes for protecting the source-destination transmission against the eavesdroppers, which can collude and combine information via diversity combining techniques. To be specific, four relay selection schemes, which differ in the way they employ available measures link quality, are considered to deliver the source information to the destination via a decode-and-forward (DF) strategy. To evaluate the security performance of the multi-hop cooperative link in the presence of colluding eavesdroppers, we derive novel closed-form analytical expressions for the secrecy outage probability (SOP) with consideration of special cases of practical interest. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document