scholarly journals Electron Energization Dynamics in Interaction of Self-Generated Magnetic Vortices in Upstream of Collisionless Electron/Ion Shocks

Author(s):  
N. Naseri ◽  
S. G. Bochkarev ◽  
V. Y. Bychenkov ◽  
V. Khudik ◽  
G. Shvets

Abstract Relativistic collisionless shocks are considered responsible for particle energization mechanisms leading to particle acceleration. While electron energization in shock front region of electron/ion collisionless shocks are the most commonly studied, the mechanism of electron energization in interaction with self-generated magnetic vortices (MVs) in upstream region is still unclear. We investigate electron energization mechanism in upstream region of electron/ion relativistic collisionless shocks, using two dimensional particle-in-cell (PIC) simulations. We discuss mechanism of electron energization which takes place in upstream region of the shock, where the counter stream particles interact with incoming flow. The energy gain of electrons happens during their interaction with evolving fields of self-generated magnetic vortices in this region. Three Fermi-like electron energization scenarios are discussed. Stochastic acceleration of electrons in interaction with fields of MV leads to anisotropic heating of fast electrons due to diffusion in the momentum space of electrons and, finally, synergetic effect of evolving fields of MVs leads to the formation of a power-law tail of supra-thermal particles.

2016 ◽  
Vol 34 (2) ◽  
pp. 362-367 ◽  
Author(s):  
A. Bret ◽  
A. Stockem Novo ◽  
R. Narayan ◽  
C. Ruyer ◽  
M. E. Dieckmann ◽  
...  

AbstractCollisionless shocks are shocks in which the mean-free path is much larger than the shock front. They are ubiquitous in astrophysics and the object of much current attention as they are known to be excellent particle accelerators that could be the key to the cosmic rays enigma. While the scenario leading to the formation of a fluid shock is well known, less is known about the formation of a collisionless shock. We present theoretical and numerical results on the formation of such shocks when two relativistic and symmetric plasma shells (pair or electron/proton) collide. As the two shells start to interpenetrate, the overlapping region turns Weibel unstable. A key concept is the one of trapping time τp, which is the time when the turbulence in the central region has grown enough to trap the incoming flow. For the pair case, this time is simply the saturation time of the Weibel instability. For the electron/proton case, the filaments resulting from the growth of the electronic and protonic Weibel instabilities, need to grow further for the trapping time to be reached. In either case, the shock formation time is 2τp in two-dimensional (2D), and 3τp in 3D. Our results are successfully checked by particle-in-cell simulations and may help designing experiments aiming at producing such shocks in the laboratory.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


2010 ◽  
Vol 108 (10) ◽  
pp. 103305 ◽  
Author(s):  
E. Kawamura ◽  
A. J. Lichtenberg ◽  
M. A. Lieberman

2015 ◽  
Vol 33 (3) ◽  
pp. 345-350 ◽  
Author(s):  
H. Comişel ◽  
Y. Narita ◽  
U. Motschmann

Abstract. The concept of the de Hoffmann–Teller frame is revisited for a high Mach-number quasi-perpendicular collisionless shock wave. Particle-in-cell simulation shows that the local magnetic field oscillations in the shock layer introduce a residual motional electric field in the de Hoffmann–Teller frame, which is misleading in that one may interpret that electrons were not accelerated but decelerated in the shock layer. We propose the concept of the adaptive de Hoffmann–Teller (AHT) frame in which the residual convective field is canceled by modulating the sliding velocity of the de Hoffmann–Teller frame. The electrostatic potential evaluated by Liouville mapping supports the potential profile obtained by electric field in this adaptive frame, offering a wide variety of applications in shock wave studies.


2001 ◽  
Vol 448 ◽  
pp. 53-80 ◽  
Author(s):  
Z. LIU ◽  
R. J. ADRIAN ◽  
T. J. HANRATTY

Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.


2010 ◽  
Vol 5 (2) ◽  
pp. 85-97
Author(s):  
Andrey V. Terekhov ◽  
Igor V. Timofeev ◽  
Konstantin V. Lotov

A two-dimensional particle-in-cell numerical model is developed to simulate collective relaxation of powerful electron beams in plasmas. To increase the efficiency of parallel particle-in-cell simulations on supercomputers, the Dichotomy Algorithm is used for inversion of the Laplace operator. The proposed model is tested with several well-known physical phenomena and is shown to adequately simulate basic effects of the beam driven turbulence. Also, the modulational instability is studied in the regime when the energy of pumping wave significantly exceeds the thermal plasma energy


Sign in / Sign up

Export Citation Format

Share Document