scholarly journals Deep Learning Model of Dock by Dock Process Significantly Accelerate the Process of Docking-Based Virtual Screening

Author(s):  
Wei Ma ◽  
Qin Xie ◽  
Jianhang Zhang ◽  
Shiliang Li ◽  
Xiaobing Deng ◽  
...  

Abstract Docking-based virtual screening (VS process) selects ligands with potential pharmacological activities from millions of molecules using computational docking methods, which greatly could reduce the number of compounds for experimental screening, shorten the research period and save the research cost. Howerver, a majority of compouds with low docking scores could waste most of the computational resources. Herein, we report a novel and practical docking-based machine learning method called MLDDM (Machince Learning Docking-by-Docking Models). It is composed of a regression model and a classification model that simulates a classical docking by docking protocol ususally applied in many virtual screening projects. MLDDM could quickly eliminate compounds with low docking scores and the retained compounds with potential high docking scores would be examined for further real docking program. We demonstrated that MLDDM has a good ability to identify active compounds in the case studies for 10 specific protein targets. Compared to pure docking by docking based VS protocol, the VS process with MLDDM can achieve an over 120 times speed increment on average and the consistency rate with corresponding docking by docking VS protocol is above 0.8. Therefore, it would be promising to be used for examing ultra-large compound libraries in the current big data era.

2020 ◽  
Author(s):  
Guangfeng Zhou ◽  
Lance Stewart ◽  
Gabriella Reggiano ◽  
Frank DiMaio

To contribute to the combat of COVID-2019, we applied structure-based computational docking screens using flexible docking protocol of Rosetta GALigandDock against multiple potential SARS-CoV-2 protein targets, including the Nsp5 3-chymotrypsin-like protease (3CLpro), the Nsp3 ADP ribose phosphatase, the Nsp15 Endoribonuclease, the RNA binding domain of nucleocapsid phosphoprotein, the Nsp16 2'-O-MTase, Nsp14, and Nsp12 RNA-dependent RNA polymerase. Screening against a re-purposing library of 8,395 FDA approved drugs at various stages of drug development and various natural products from DrugBank, we found a total of 124 putative inhibitors with predicted binding ∆G less than -8.9 kcal/mol, including HIV-AIDS drugs Nelfinavir and Tipranavir, targeting 3Clpro with ∆G=-18.8 kcal/mol and ∆G=-16.6 kcal/mol respectively. These primarily involve binders to the Nsp5 3CLpro (37 hits) and the Nsp3 ADP ribose phosphatase (36 hits), with smaller numbers of hits to other targets. These small molecule putative inhibitors suggest a possible avenue for drug repurposing, and the identified compounds should serve as a high-priority list for experimental validation via co-crystallization, enzymatic and cell based assays.


2019 ◽  
Vol 9 (21) ◽  
pp. 4538 ◽  
Author(s):  
Tatiana F. Vieira ◽  
Sérgio F. Sousa

AutoDock and Vina are two of the most widely used protein–ligand docking programs. The fact that these programs are free and available under an open source license, also makes them a very popular first choice for many users and a common starting point for many virtual screening campaigns, particularly in academia. Here, we evaluated the performance of AutoDock and Vina against an unbiased dataset containing 102 protein targets, 22,432 active compounds and 1,380,513 decoy molecules. In general, the results showed that the overall performance of Vina and AutoDock was comparable in discriminating between actives and decoys. However, the results varied significantly with the type of target. AutoDock was better in discriminating ligands and decoys in more hydrophobic, poorly polar and poorly charged pockets, while Vina tended to give better results for polar and charged binding pockets. For the type of ligand, the tendency was the same for both Vina and AutoDock. Bigger and more flexible ligands still presented a bigger challenge for these docking programs. A set of guidelines was formulated, based on the strengths and weaknesses of both docking program and their limits of validation.


2020 ◽  
Author(s):  
Guangfeng Zhou ◽  
Lance Stewart ◽  
Gabriella Reggiano ◽  
Frank DiMaio

To contribute to the combat of COVID-2019, we applied structure-based computational docking screens using flexible docking protocol of Rosetta GALigandDock against multiple potential SARS-CoV-2 protein targets, including the Nsp5 3-chymotrypsin-like protease (3CLpro), the Nsp3 ADP ribose phosphatase, the Nsp15 Endoribonuclease, the RNA binding domain of nucleocapsid phosphoprotein, the Nsp16 2'-O-MTase, Nsp14, and Nsp12 RNA-dependent RNA polymerase. Screening against a re-purposing library of 8,395 FDA approved drugs at various stages of drug development and various natural products from DrugBank, we found a total of 124 putative inhibitors with predicted binding ∆G less than -8.9 kcal/mol, including HIV-AIDS drugs Nelfinavir and Tipranavir, targeting 3Clpro with ∆G=-18.8 kcal/mol and ∆G=-16.6 kcal/mol respectively. These primarily involve binders to the Nsp5 3CLpro (37 hits) and the Nsp3 ADP ribose phosphatase (36 hits), with smaller numbers of hits to other targets. These small molecule putative inhibitors suggest a possible avenue for drug repurposing, and the identified compounds should serve as a high-priority list for experimental validation via co-crystallization, enzymatic and cell based assays.


2020 ◽  
Vol 21 (14) ◽  
pp. 5152 ◽  
Author(s):  
Silvia Gervasoni ◽  
Giulio Vistoli ◽  
Carmine Talarico ◽  
Candida Manelfi ◽  
Andrea R. Beccari ◽  
...  

(1) Background: Virtual screening studies on the therapeutically relevant proteins of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) require a detailed characterization of their druggable binding sites, and, more generally, a convenient pocket mapping represents a key step for structure-based in silico studies; (2) Methods: Along with a careful literature search on SARS-CoV-2 protein targets, the study presents a novel strategy for pocket mapping based on the combination of pocket (as performed by the well-known FPocket tool) and docking searches (as performed by PLANTS or AutoDock/Vina engines); such an approach is implemented by the Pockets 2.0 plug-in for the VEGA ZZ suite of programs; (3) Results: The literature analysis allowed the identification of 16 promising binding cavities within the SARS-CoV-2 proteins and the here proposed approach was able to recognize them showing performances clearly better than those reached by the sole pocket detection; and (4) Conclusions: Even though the presented strategy should require more extended validations, this proved successful in precisely characterizing a set of SARS-CoV-2 druggable binding pockets including both orthosteric and allosteric sites, which are clearly amenable for virtual screening campaigns and drug repurposing studies. All results generated by the study and the Pockets 2.0 plug-in are available for download.


2008 ◽  
Vol 13 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Jean-Philippe Luzy ◽  
Huixiong Chen ◽  
Brunilde Gril ◽  
Wang-Qing Liu ◽  
Michel Vidal ◽  
...  

Adaptor proteins Grb7 and Grb2 have been implicated as being 2 potential therapeutic targets in several human cancers, especially those that overexpress ErbB2. These 2 proteins contain both a SH2 domain (Src homology 2) that binds to phosphorylated tyrosine residues contained within ErbB2 and other specific protein targets. Two assays based on enzyme-linked immunosorbent assay and fluorescence polarization methods have been developed and validated to find and rank inhibitors for both proteins binding to the pY1139. Fluorescence polarization assays allowed the authors to determine quickly and reproducibly affinities of peptides from low nanomolar to high micromolar range and to compare them directly for Grb7 and Grb2. As a result, the assays have identified a known peptidomimetic Grb2 SH2 inhibitor (mAZ-pTyr-(αMe)pTyr-Asn-NH2) that exhibits the most potent affinity for the Grb7 SH2 domain described to date. ( Journal of Biomolecular Screening 2008:112-119)


2007 ◽  
Vol 15 (3) ◽  
pp. 1483-1503 ◽  
Author(s):  
Gerardo M. Casañola-Martín ◽  
Yovani Marrero-Ponce ◽  
Mahmud Tareq Hassan Khan ◽  
Arjumand Ather ◽  
Sadia Sultan ◽  
...  

ChemBioChem ◽  
2012 ◽  
Vol 13 (18) ◽  
pp. 2729-2737 ◽  
Author(s):  
Baojiang Wang ◽  
Yimin Liang ◽  
Hongjuan Dong ◽  
Tianfeng Tan ◽  
Bao Zhan ◽  
...  

Author(s):  
Jochen Zuegge ◽  
Uli Fechner ◽  
Olivier Roche ◽  
Neil J. Parrott ◽  
Ola Engkvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document