scholarly journals Research On Roundness Error Consistency Model For Crank Journal Cylindrical grinding

Author(s):  
Xu Zeng ◽  
Xiong Wanli ◽  
Hongyan Ye ◽  
Zhiyong Tang

Abstract Cylindrical grinding is an important way to form the external shape error of the crank journal, and the accuracy consistency directly affects the interchangeability of products. To study the accuracy consistency of crank journal,a dynamic model of the grinding wheel-crankshaft grinding system based on Timoshenko beam is established, and the grinding transition process simulation algorithm with iterative convergence of grinding force-transient grinding amount cycle adapted to the model is proposed, which realizes the simulation of the roundness of the crank journal coupled with the process parameters of the grinding system. Aiming at the grinding position of each crank journal, the grinding roundness of five crank journals is simulated respectively. On this basis, the crank journal roundness consistency prediction model is established, and the effectiveness of the prediction model is verified by field experiments. Finally, the influence of grinding parameters on the consistency of the roundness of crank journal is studied. The research conclusion can provide a reference for the grinding accuracy consistency design of this type of crank journal.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1990
Author(s):  
Ivan Mendez ◽  
Jorge Alvarez ◽  
David Barrenetxea ◽  
Leire Godino

Achieving geometrical accuracy in cylindrical traverse grinding for high-aspect slender parts is still a challenge due to the flexibility of the workpiece and, therefore, the resulting shape error. This causes a bottleneck in production due to the number of spark-out strokes that must be programmed to achieve the expected dimensional and geometrical tolerances. This study presents an experimental validation of a shape-error prediction model in which a distributed load, corresponding to the grinding wheel width, is included, and allows inclusion of the effect of steady rests. Headstock and tailstock stiffness must be considered and a procedure to obtain their values is presented. Validation of the model was performed both theoretically (by comparing with FEM results) and experimentally (by comparing with the deformation profile of the real workpiece shape), obtaining differences below 5%. Having determined the shape error by monitoring the normal grinding force, a solution was presented to correct it, based on a cross-motion of the grinding wheel during traverse strokes, thus decreasing non-productive spark-out strokes. Due to its simplicity (based on the shape-error prediction model and normal grinding force monitoring), this was easily automatable. The corrective compensation cycle gave promising results with a decrease of 77% in the shape error of the ground part, and improvement in geometrically measured parameters, such as cylindricity and straightness.


2013 ◽  
Vol 690-693 ◽  
pp. 2395-2402 ◽  
Author(s):  
De Lin Qin ◽  
Feng Wang ◽  
Fang Jian Xi ◽  
Zhi Feng Liu

Aiming at the axle material 30CrMoA high speed cylindrical grinding force calculation problems, a consideration of plowing force grinding force model is established based on the Werner’s theory model of grinding force, and the friction force and plowing force coefficient is defined as variable parameters. On the basis of the finite element analysis software DEFORM-3D, a high speed cylindrical grinding simulation model method is presented.Through the theoretical value and simulation value contrast, a mutual authentication of grinding force model is proposed. According to the simulation analysis results of grinding force and grinding wheel speed, grinding depth and the relationship between the workpiece speed, theoretical and technical guidance for the grinding force calculation and the selection of grinding process parameters are provided.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1050-1054
Author(s):  
Jun Min Xiao ◽  
Jin Xie

In order to reduce the roundness error of cylindrical grinding of shaft parts for 20CrMnTi alloy steel, the related experiments of high-speed cylindrical grinding are carried out and the influence of grinding parameters on roundness is analyzed. Based on the analysis of experimental data the conclusions are as follows: The influence of grinding wheel speed on work-piece roundness is not apparent, but the influence of work-piece speed and grinding depth on roundness is very significant. Based on high-speed grinding experiments the prediction model of cylindrical grinding for 20CrMnTi alloy steel is established by using of regression analysis method of least square. Based on the analysis of the roundness prediction model of cylindrical grinding the conclusions are as follows: The roundness error of cylindrical grinding parts will become lager with the increase of work-piece speed, grinding depth and grinding wheel speed.


2013 ◽  
Vol 797 ◽  
pp. 733-739
Author(s):  
Bo Zhao ◽  
Ya Min Li ◽  
Ping Yan Bian

In order to reveal the theoretical nature of ultrasonic ELID composite grinding which is an efficient grinding technology, this paper theoretically analyzes a single grains motion characteristics in the process of internal cylindrical grinding under axial vibration and established a single grits kinematic equation. Then the grits trajectory is draw by matlab, and the contact length of the grinding wheel and the workpiece is achieved. At the same time the electrolysis parameters are introduced into the dynamic number of effective grits with analysis its electrochemical action. Thereby a force model for the ultrasonic ELID composite internal cylindrical grinding is established. Through analysis the model it is easy to find the force is fluctuated periodically with electrical current changing.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


Author(s):  
Hidetaka Fujii ◽  
Takashi Onishi ◽  
Chinhu Lin ◽  
Moriaki Sakakura ◽  
Kazuhito Ohashi

Abstract In the case of traverse grinding of a slender workpiece, the ground workpiece is easily deformed by the normal grinding force due to its low stiffness. To reduce the form error caused by the elastic deformation of the workpiece, a steady rest is widely used. Generally, a steady rest is set to push the ground area of the workpiece. However, the stepped shape error is generated at the contact point where a steady rest pushed the workpiece because the pushing force of a steady rest is decreased after the material of the contact point is removed. In this study, to reduce the stepped shape error of the ground workpiece, we proposed a new method to set a steady rest. In this method, the steady rest was set to push the area where was not ground. In addition, the traverse speed of the workpiece was adjusted to keep the elastic deformation of the workpiece constant. The suitable method to control the traverse speed was estimated by using a beam model that could simulate the elastic deformation of the workpiece during the grinding process. It was confirmed that the new method could improve the form accuracy of a slender workpiece through grinding experiments.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2009 ◽  
Vol 69-70 ◽  
pp. 39-43 ◽  
Author(s):  
Li Jun Li ◽  
Fei Hu Zhang ◽  
Shen Dong

Parallel grinding is an effective method of aspheric moulds machining which is usually made of industrial ceramic such as silicon carbide (SiC) or tungsten carbide (WC), but if the spherical grinding wheel is not being with precision truing and dressing, the roughness and form accuracy of the ground aspheric surface should get worse, for this reason, in this paper, the influence factors of thoroughness and form accuracy induced by the wheel truing and dressing are studied firstly, and a new 3-axis CNC Ultra-precision grinding system which is based on the PMAC (Programmable Multi-axes Controller) is developed, through simultaneous motion of the controlled X, Z and B axis, the form errors which is induced by the grinding wheel can be improved theoretically, and the aspheric mould machining test shown that the surface roughness of Ra 0.025μm and the form accuracy of P-V 1.15μm are achieved.


Sign in / Sign up

Export Citation Format

Share Document