scholarly journals Reducing the Number of Measuring Points of the LED-Based Colorimetric Probe

Author(s):  
Milos Arbanas ◽  
Branislav Batinic ◽  
Jovan Bajic ◽  
Marko Vasiljevic-Toskic ◽  
Miodrag Brkic ◽  
...  

Abstract In this paper, reducing the number of necessary measuring points for estimating a reflected electromagnetic spectrum of a printed color patch is presented. In our previous work, a machine learning-based method was proven to be superior to Cubic Hermite interpolation in estimating spectrum based on six measured values. Now, the new hypothesis is that the number of measuring points could be decreased without the significant loss of the spectrum estimation. The ECI2002 test chart was used to create the dataset, which was further divided into training and test subset. For all the colors on the test chart, the measurements were performed on printed patches with the device proposed in our previous work, as well as with the commercial spectrophotometer X-Rite i1 Publish Pro2, which were then used as the ground truth, or reference values. The Artificial Neural Networks were trained to estimate spectrums based on measurements acquired with our device. The results proved satisfactory even when the number of measuring points is reduced from six to three.

2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2021 ◽  
Vol 23 ◽  
pp. 100313
Author(s):  
Nicholas A. Thurn ◽  
Taylor Wood ◽  
Mary R. Williams ◽  
Michael E. Sigman

Author(s):  
Odysseas Kontovourkis ◽  
Marios C. Phocas ◽  
Ifigenia Lamprou

AbstractNowadays, on the basis of significant work carried out, architectural adaption structures are considered to be intelligent entities, able to react to various internal or external influences. Their adaptive behavior can be examined in a digital or physical environment, generating a variety of alternative solutions or structural transformations. These are controlled through different computational approaches, ranging from interactive exploration ones, producing alternative emergent results, to automate optimization ones, resulting in acceptable fitting solutions. This paper examines the adaptive behavior of a kinetic structure, aiming to explore suitable solutions resulting in final appropriate shapes during the transformation process. A machine learning methodology that implements an artificial neural networks algorithm is integrated to the suggested structure. The latter is formed by units articulated together in a sequential composition consisting of primary soft mechanisms and secondary rigid components that are responsible for its reconfiguration and stiffness. A number of case studies that respond to unstructured environments are set as examples, to test the effectiveness of the proposed methodology to be used for handling a large number of input data and to optimize the complex and nonlinear transformation behavior of the kinetic system at the global level, as a result of the units’ local activation that influences nearby units in a chaotic and unpredictable manner.


2021 ◽  
Vol 11 (19) ◽  
pp. 9296
Author(s):  
Talha Mahboob Alam ◽  
Mubbashar Mushtaq ◽  
Kamran Shaukat ◽  
Ibrahim A. Hameed ◽  
Muhammad Umer Sarwar ◽  
...  

Lack of education is a major concern in underdeveloped countries because it leads to poor human and economic development. The level of education in public institutions varies across all regions around the globe. Current disparities in access to education worldwide are mostly due to systemic regional differences and the distribution of resources. Previous research focused on evaluating students’ academic performance, but less has been done to measure the performance of educational institutions. Key performance indicators for the evaluation of institutional performance differ from student performance indicators. There is a dire need to evaluate educational institutions’ performance based on their disparities and academic results on a large scale. This study proposes a model to measure institutional performance based on key performance indicators through data mining techniques. Various feature selection methods were used to extract the key performance indicators. Several machine learning models, namely, J48 decision tree, support vector machines, random forest, rotation forest, and artificial neural networks were employed to build an efficient model. The results of the study were based on different factors, i.e., the number of schools in a specific region, teachers, school locations, enrolment, and availability of necessary facilities that contribute to school performance. It was also observed that urban regions performed well compared to rural regions due to the improved availability of educational facilities and resources. The results showed that artificial neural networks outperformed other models and achieved an accuracy of 82.9% when the relief-F based feature selection method was used. This study will help support efforts in governance for performance monitoring, policy formulation, target-setting, evaluation, and reform to address the issues and challenges in education worldwide.


Sign in / Sign up

Export Citation Format

Share Document