scholarly journals SorCS2 Dynamically Interacts with TrkB and GluN2B to Control Neurotransmission and Huntington’s Disease Progression

Author(s):  
Alena Salašová ◽  
Niels Sanderhoff Degn ◽  
Mikhail Paveliev ◽  
Niels Kjærgaard Madsen ◽  
Saray López Benito ◽  
...  

Abstract Background: Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor dysfunction and loss of medium spiny neurons (MSNs) in dorsal striatum. Brain-derived neurotrophic factor (BDNF) sustains functionality and integrity of MSNs, and thus reduced BDNF signaling is integral to the disease. Mutations in BDNF receptor SorCS2 were recently identified in HD patients. Our study investigates the role of SorCS2 in MSNs biology and in HD progression. Methods: We derived a double transgenic line by crossbreeding SorCS2 deficient (KO) mice with the HD mouse model R6/1. Subsequently, we characterized the SorCS2 KO; R6/1 line by a set of behavioral and biochemical studies to evaluate phenotypes related to HD. Moreover, in combination with electrophysiology and super resolution microscopy techniques, we addressed the molecular mechanism by which SorCS2 controls synaptic activity in MSNs neurons. Results: We show that SorCS2 is expressed in MSNs with reduced levels in R6/1 HD model, and that SorCS2 deficiency exacerbates the disease progression in R6/1 mice. Furthermore, we find that SorCS2 binds TrkB and the NMDA receptor subunit GluN2B, which is required to control neurotransmission in corticostriatal synapses. While BDNF stimulates SorCS2-TrkB complex formation to enable TrkB signaling, it disengages SorCS2 from GluN2B, leading to enrichment of the subunit at postsynaptic densities. Consequently, long-term potentiation (LTP) is abolished in SorCS2 deficient mice, despite increased striatal TrkB and unaltered BDNF expression. However, the addition of exogenous BDNF rescues the phenotype. Finally, GluN2B, but not GluN2A, currents are also severely impaired in the SorCS2 KO mice. Conclusions: We formulate a novel molecular mechanism by which SorCS2 acts as a molecular switch. SorCS2 targets TrkB and GluN2B into postsynaptic densities to enable BDNF signaling and NMDAR dependent neurotransmission in the dorsal striatum. Remarkably, the binding between SorCS2 and TrkB or GluN2B, respectively, is mutually exclusive and controlled by BDNF. This mechanism provides an explanation why deficient SorCS2 signaling severely aggravates HD progression in mice. Moreover, we provide evidence that this finding might represent a general mechanism of SorCS2 signaling found in other brain areas, thus increasing its relevance for other neurological and psychiatric impairments.

2021 ◽  
Author(s):  
Alena Salasova ◽  
Niels Sanderhoff Degn ◽  
Mikhail Paveliev ◽  
Niels Kjærsgaard Madsen ◽  
Saray Lopez Benito ◽  
...  

Abstract Background Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor dysfunction and loss of medium spiny neurons (MSNs) in dorsal striatum. Brain-derived neurotrophic factor (BDNF) sustains functionality and integrity of MSNs, and thus reduced BDNF signaling is integral to the disease. Mutations in BDNF receptor SorCS2 were recently identified in HD patients. Our study investigates the role of SorCS2 in MSNs biology and in HD progression. Methods We derived a double transgenic line by crossbreeding SorCS2 deficient (KO) mice with the HD mouse model R6/1. Subsequently, we characterized the SorCS2 KO; R6/1 line by a set of behavioral and biochemical studies to evaluate phenotypes related to HD. Moreover, in combination with electrophysiology and super resolution microscopy techniques, we addressed the molecular mechanism by which SorCS2 controls synaptic activity in MSNs neurons. Results We show that SorCS2 is expressed in MSNs with reduced levels in R6/1 HD model, and that SorCS2 deficiency exacerbates the disease progression in R6/1 mice. Furthermore, we find that SorCS2 binds TrkB and the NMDA receptor subunit GluN2B, which is required to control neurotransmission in corticostriatal synapses. While BDNF stimulates SorCS2-TrkB complex formation to enable TrkB signaling, it disengages SorCS2 from GluN2B, leading to enrichment of the subunit at postsynaptic densities. Consequently, long-term potentiation (LTP) is abolished in SorCS2 deficient mice, despite increased striatal TrkB and unaltered BDNF expression. However, the addition of exogenous BDNF rescues the phenotype. Finally, GluN2B, but not GluN2A, currents are also severely impaired in the SorCS2 KO mice. Conclusions We formulate a novel molecular mechanism by which SorCS2 acts as a molecular switch. SorCS2 targets TrkB and GluN2B into postsynaptic densities to enable BDNF signaling and NMDAR dependent neurotransmission in the dorsal striatum. Remarkably, the binding between SorCS2 and TrkB or GluN2B, respectively, is mutually exclusive and controlled by BDNF. This mechanism provides an explanation why deficient SorCS2 signaling severely aggravates HD progression in mice. Moreover, we provide evidence that this finding might represent a general mechanism of SorCS2 signaling found in other brain areas, thus increasing its relevance for other neurological and psychiatric impairments.


2021 ◽  
Author(s):  
Alena Salašová ◽  
Niels Sanderhoff Degn ◽  
Mikhail Paveliev ◽  
Niels Kjaergaard Madsen ◽  
Saray Benito ◽  
...  

Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor dysfunction and loss of medium spiny neurons (MSNs) in dorsal striatum. Brain-derived neurotrophic factor (BDNF) sustains functionality and integrity of MSNs, and thus reduced BDNF signaling is integral to the disease. Here we show that SorCS2 is expressed in MSNs with reduced expression in R6/1 HD model, and that SorCS2 deficiency exacerbates the disease progression in R6/1 mice. Furthermore, we find that SorCS2 binds TrkB and the NMDA receptor subunit GluN2B, which is required to control neurotransmission in corticostriatal synapses. While BDNF stimulates SorCS2-TrkB complex formation to enable TrkB signaling, it disengages SorCS2 from GluN2B, leading to enrichment of the subunit at postsynaptic densities. Consequently, long-term potentiation (LTP) is abolished in SorCS2 deficient mice, despite increased striatal TrkB and unaltered BDNF expression. In contrast, the addition of exogenous BDNF rescues the phenotype. Finally, GluN2B, but not GluN2A, currents are also severely impaired in the SorCS2 KO mice. To conclude, we uncovered that SorCS2 dynamically targets TrkB and GluN2B to orchestrate BDNF-dependent plasticity in MSNs of dorsal striatum. We propose that SorCS2 deficiency impairs MSN function thereby increasing neuronal vulnerability and accelerating the motor deficits in Huntington's disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kirsi M. Kinnunen ◽  
Adam J. Schwarz ◽  
Emily C. Turner ◽  
Dorian Pustina ◽  
Emily C. Gantman ◽  
...  

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder that is caused by expansion of a CAG-repeat tract in the huntingtin gene and characterized by motor impairment, cognitive decline, and neuropsychiatric disturbances. Neuropathological studies show that disease progression follows a characteristic pattern of brain atrophy, beginning in the basal ganglia structures. The HD Regulatory Science Consortium (HD-RSC) brings together diverse stakeholders in the HD community—biopharmaceutical industry, academia, nonprofit, and patient advocacy organizations—to define and address regulatory needs to accelerate HD therapeutic development. Here, the Biomarker Working Group of the HD-RSC summarizes the cross-sectional evidence indicating that regional brain volumes, as measured by volumetric magnetic resonance imaging, are reduced in HD and are correlated with disease characteristics. We also evaluate the relationship between imaging measures and clinical change, their longitudinal change characteristics, and within-individual longitudinal associations of imaging with disease progression. This analysis will be valuable in assessing pharmacodynamics in clinical trials and supporting clinical outcome assessments to evaluate treatment effects on neurodegeneration.


2021 ◽  
Vol 10 (3) ◽  
pp. 391-404
Author(s):  
Hagar G. Yamin ◽  
Noa Menkes-Caspi ◽  
Edward A. Stern ◽  
Dana Cohen

Background: Huntington’s disease (HD) is an inherited fatal neurodegenerative disease, leading to neocortical and striatal atrophy. The commonly studied R6/2 HD transgenic mouse model displays progressive motor and cognitive deficits in parallel to major pathological changes in corticostriatal circuitry. Objective: To study how disease progression influences striatal encoding of movement. Methods: We chronically recorded neuronal activity in the dorsal striatum of R6/2 transgenic (Tg) mice and their age-matched nontransgenic littermate controls (WTs) during novel environment exposure, a paradigm which engages locomotion to explore the novel environment. Results: Exploratory locomotion degraded with age in Tg mice as compared to WTs. We encountered fewer putative medium spiny neurons (MSNs)—striatal projection neurons, and more inhibitory interneurons—putative fast spiking interneurons (FSIs) in Tg mice as compared to WTs. MSNs from Tg mice fired less spikes in bursts without changing their firing rate, while FSIs from these mice had a lower firing rate and more of them were task-responsive as compared to WTs. Additionally, MSNs from Tg mice displayed a reduced ability to encode locomotion across age groups, likely associated with their low prevalence in Tg mice, whereas the encoding of locomotion by FSIs from Tg mice was substantially reduced solely in old Tg mice as compared to WTs. Conclusion: Our findings reveal an age-dependent decay in striatal information processing in transgenic mice. We propose that the ability of FSIs to compensate for the loss of MSNs by processes of recruitment and enhanced task-responsiveness diminishes with disease progression, possibly manifested in the displayed age-dependent degradation of exploratory locomotion.


2021 ◽  
Vol 186 ◽  
pp. 108467
Author(s):  
Simon Couly ◽  
Allison Carles ◽  
Morgane Denus ◽  
Lorraine Benigno-Anton ◽  
Florence Maschat ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 257
Author(s):  
Elisabeth Singer ◽  
Lilit Hunanyan ◽  
Magda M. Melkonyan ◽  
Jonasz J. Weber ◽  
Lusine Danielyan ◽  
...  

Huntington’s disease (HD) is a monogenetic neurodegenerative disorder characterized by the accumulation of polyglutamine-expanded huntingtin (mHTT). There is currently no cure, and therefore disease-slowing remedies are sought to alleviate symptoms of the multifaceted disorder. Encouraging findings in Alzheimer’s and Parkinson’s disease on alpha-2 adrenoceptor (α2-AR) inhibition have shown neuroprotective and aggregation-reducing effects in cell and animal models. Here, we analyzed the effect of beditin, a novel α2- adrenoceptor (AR) antagonist, on cell viability and mHTT protein levels in cell models of HD using Western blot, time-resolved Foerster resonance energy transfer (TR-FRET), lactate dehydrogenase (LDH) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) cytotoxicity assays. Beditin decreases cytotoxicity, as measured by TUNEL staining and LDH release, in a neuronal progenitor cell model (STHdh cells) of HD and decreases the aggregation propensity of HTT exon 1 fragments in an overexpression model using human embryonic kidney (HEK) 293T cells. α2-AR is a promising therapeutic target for further characterization in HD models. Our data allow us to suggest beditin as a valuable candidate for the pharmaceutical manipulation of α2-AR, as it is capable of modulating neuronal cell survival and the level of mHTT.


2020 ◽  
Vol 11 ◽  
Author(s):  
Miguel A. Andrade-Navarro ◽  
Katja Mühlenberg ◽  
Eike J. Spruth ◽  
Nancy Mah ◽  
Adrián González-López ◽  
...  

Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the Huntingtin gene. As disease-modifying therapies for HD are being developed, peripheral blood cells may be used to indicate disease progression and to monitor treatment response. In order to investigate whether gene expression changes can be found in the blood of individuals with HD that distinguish them from healthy controls, we performed transcriptome analysis by next-generation sequencing (RNA-seq). We detected a gene expression signature consistent with dysregulation of immune-related functions and inflammatory response in peripheral blood from HD cases vs. controls, including induction of the interferon response genes, IFITM3, IFI6 and IRF7. Our results suggest that it is possible to detect gene expression changes in blood samples from individuals with HD, which may reflect the immune pathology associated with the disease.


Sign in / Sign up

Export Citation Format

Share Document