scholarly journals Theoretical and Experimental Research on a Novel Method of Cluster Magnetorheological Finishing Based on Array Circular Holes Polishing Disk

Author(s):  
Bin Luo ◽  
Qiusheng Yan ◽  
Jingfu Chai ◽  
Wenqing Song ◽  
Jisheng Pan

Abstract with the high performance of microelectronic and optoelectronic devices, the new generation of optoelectronic wafers is developing in the direction of large size and ultra-thinning, which requires ultra-smooth surfaces with sub-nanometer surface roughness. It puts forward new requirements and challenges for the efficient and ultra-smooth planarization processing of optoelectronic wafers. This paper proposes a novel method of cluster magnetorheological finishing based on array circular holes polishing disk, which can effectively improve the polishing shear force and polishing efficiency. The appropriate polishing shear force and material removal rate are the keys to achieve low roughness and low damage processing of optoelectronic wafers. Therefore, the shear force model of solid particles in magnetorheological finishing fluid is established based on the tribological principle. The material removal rate model is established by combining the polishing shear force model with the velocity model. The correctness of the above model is verified by the rotary dynamometer and repeated single-factor experiments. The errors between theoretical and experimental values of polishing shear force and material removal rate are 8.8% and 10.8%, respectively. The new magnetorheological finishing method can realize the efficient and ultra-smooth planarization of optoelectronic wafers. The established model can theoretically guide the optimization of the surface structure and polishing process of polishing disks.

2007 ◽  
Vol 359-360 ◽  
pp. 384-388
Author(s):  
Feng Jun Chen ◽  
Shao Hui Yin ◽  
Jian Wu Yu ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
...  

According to the sharp rheological characteristics of magnetorheological fluid in the magnetic field, the principle and mechanism of magnetorheological finishing is analyzed. Based on the Preston equation, the Reynolds equation and its boundary conditions, the two-dimensional material removal model is built and simulated. Furthermore, a series of MRF experiments are carried out, and the influence of the immersed depth and material kinds on material removal rate are clarified respectively. The experimental results are compared with the modeling results of material removal rate to confirm the mechanistic model validity.


2016 ◽  
Vol 874 ◽  
pp. 158-166
Author(s):  
Run Chen ◽  
Jia Bin Lu ◽  
Qiu Sheng Yan ◽  
Xiao Lan Xiao ◽  
De Yuan Li

The polishing experiments of anodic oxide film of aluminum were performed to research the influence of polishing parameters on the surface roughness and material removal rate in the cluster magnetorheological finishing (MRF). Experimental results demonstrate that a mirror effect can be reached when the anodic oxide film of aluminum is polished by the Cluster MRF. The roughness of the workpiece surface after polishing for 15 min is decreased from Ra 0.575μm to Ra 4.13nm and the material removal rate is 0.653mg/min. With the extension of the polishing time, the surface roughness rapidly declines at first and then slowly decreases. When the machining time is more than 15min, the anodic oxide film of aluminum is easily worn out, resulting in a sharp increase in the surface roughness. The machining gap between the workpiece and the polishing plate influences the polishing effect of anodic oxide film of aluminum. With the increase of the machining gap, the material removal rate decreases and the surface roughness increases. A good surface quality can be got at the machining gap of 1.1mm. The type and size of abrasive particles will directly affect the polishing effect of anodic oxide film of aluminum, and when using CeO2 abrasive with the particle size of W3, a higher material removal rate and a smaller surface roughness can be obtained.


Author(s):  
Xiangcheng Kong ◽  
Li Zhang ◽  
Jingyan Dong ◽  
Paul H. Cohen

Nanofabrication technology is very important for many emerging engineering and scientific applications. Among different nanofabrication technologies, vibration-assisted nano-machining provides a low cost easy-to-setup approach to produce structures with nano-scale resolution. It is critical to understand the mechanism for the nano-machining process and predict the cutting force, so as to provide guidelines to achieve higher productivity and reduce tip wear. In this article, a machining force model for tip-based nano-machining process is developed and validated. We analyze the instantaneous engagement area between cutting tool (AFM tip) and workpiece (PMMA film) at the given tip position for the vibration-assisted nano-machining process. A discrete voxel method is adopted to calculate the material removal rate at each moment, and an empirical machining force model is developed by correlating the cutting force with material removal rate. The model was verified by experiments over a large range of machining conditions, and the coefficients and parameters in the force model was obtained using Mean Square Error (MSE) method by comparing the predicted machining force from the force model and measured machining force from experiments. The results show good fit between predicted machining force and measured machining force.


2012 ◽  
Vol 500 ◽  
pp. 259-265 ◽  
Author(s):  
Faizul Ezmat Abdul Hamid ◽  
Mohd Amri Lajis

In this paper an attempt has been made to investigate the performance of an electrode made through powder metallurgy (PM) of copper tungsten during electrical discharge machining (EDM). Experimental results are presented on electrical discharge machining of AISI D2 hardened steel in kerosene with a copper tungsten (Cu35% - W65%) tool electrode made through PM method with a constant duty factor of 80%. In term of high performance EDM process, higher peak current (>20A) and pulse duration (>400µs) with a high machining efficiency were used. Experimental results have shown that machining at a peak current of 40A and pulse duration of 400µs yields the highest material removal rate (MRR) whereas machining at a peak current of 20A and pulse duration of 400µs yields the lowest tool wear rate (TWR). The lowest surface roughness appears at the lowest material removal rate which is at a peak current of 20A and pulse duration of 600µs. The optimum machining performance can be performed by the combination of pulse duration and peak current at 600µs and 40A respectively.


2018 ◽  
Vol 57 (05) ◽  
pp. 1 ◽  
Author(s):  
Feng Guan ◽  
Hao Hu ◽  
Shengyi Li ◽  
Xiaoqiang Peng ◽  
Feng Shi

Author(s):  
Amir Masoud Tahvilian ◽  
Henri Champliaud ◽  
Zhaoheng Liu ◽  
Bruce Hazel

A flexible robotic grinding system has been used for in situ maintenance of large hydro turbine runners by Hydro-Quebec. Field trials for more than 20 years have proven the reliability and efficiency of the technology for hydropower equipment maintenance and repair. This portable robot named SCOMPI, is developed by IREQ, Research Institute of Hydro-Quebec and can perform high material removal rate grinding on hardly accessible areas of turbine runner blades. Due to the light weight and low rigidity of the robot, traditional position control of conventional grinding is not applicable in this process. Instead a hybrid force/position controller is employed to ensure the accuracy of the predefined material removal rate. Therefore, having a good force model for a specific removal rate is a prerequisite for controlling the grinding task. Understanding the grinding process as the cutting action of several single grits participating in the material removal process provides an insight to predict the needed forces. This paper presents an investigation of the effects of grits shape on cutting forces in single abrasive cutting mechanism during high removal rate grinding by SCOMPI robot. A three-dimensional finite element model is developed to simulate the chip formation process with different grit shapes. Thermal results from our previous study of temperature distribution in the contact zone for this special robotic grinding are imposed to the un-deformed chips. Then, Johnson-Cook plasticity model is employed to investigate effects of hardening and thermal softening of work piece material in cutting forces. It is also found that, rake angle and cutting edges of the grit can have significant effects on the cutting and normal forces.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Sign in / Sign up

Export Citation Format

Share Document