Effect of Process Parameters on the Microstructure and Mechanical Properties of Bars from Al-Cu-Mg Alloy Processed by Multipass Radial-Shear Rolling

Author(s):  
Torgom Akopyan ◽  
Yury Gamin ◽  
Sergey Galkin ◽  
Alexander Koshmin ◽  
Tatiana Kin ◽  
...  

Abstract The study of microstructure and mechanical properties formation of A2024 alloy obtained by the multipass radial-shear rolling (RSR) method is discussed in this article. FEM simulation was carried out that made it possible to evaluate the influence degree of rolling temperature-velocity parameters on the strain state of material. It has been found the increase in rotary velocity of rolls significantly influences on the deformation heating of bar after RSR (predominantly in its surface layer). The combination of rolling temperature-velocity conditions at selection of deformation regime has complex effect on structure and properties formation. The analysis of sizes and distribution of phase particles has shown that the rolling at lower temperatures allowed to increase the mechanical strength due to the more intensive refinement of undissolved Fe-containing phase. The gradual decrease in the rolling temperature in each pass makes possible to achieve the high strength (UTS~430 MPa and YS~255 MPa) while maintaining the ductility level ~15%, that are comparable to ones obtained at some severe plastic deformation (SPD) methods.

2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.


2021 ◽  
Vol 1035 ◽  
pp. 377-387
Author(s):  
Xin Wei Wang ◽  
Ren Bo Song ◽  
Zhong Zheng Pei ◽  
Xing Han Chen

In this paper, ER70-Ti welding wire steel produced by an enterprise was used as the test material. The final rolling temperature was set at 960 °C, 930 °C and 900 °C, and the spinning temperature was set at 880 °C, 860 °C and 840 °C. The results showed that the microhardness of the steel decreased from 303HV to 248HV and from 317HV to 276HV as the spinning temperature decreased from 880 °C to 840 °C. The microstructure and mechanical properties of the wires with the diameters of 5.5mm, 4mm, 2.5mm, 1.4 mm and 1.2mm were examined. It was observed that the microstructure of each sample had bainite and ferrite dual phase structure. With the decrease of wire diameter, the strength gradually increased and the ductility decreased. The experimental results show that the existence of bainite structure in the welding wire is the main reason for the high strength of the welding wire and easy fracture in drawing. Based on this, the final rolling temperature of 900 °C and the spinning temperature of 840 °C should be adopted in the production of ER70-Ti welding wire steel.


Author(s):  
Ahmed H. Maamoun ◽  
Yi F. Xue ◽  
Mohamed A. Elbestawi ◽  
Stephen C. Veldhuis

Additive manufacturing (AM) provides customization of the microstructure and mechanical properties of components. Selective laser melting (SLM) is the commonly used technique for processing high strength Aluminum alloys. Selection of SLM process parameters could control the microstructure of fabricated parts and their mechanical properties. However, process parameter limits and defects inside the as-built parts present obstacles to customized part production. This study is the second part of a comprehensive work that investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate the internal microstructure defects. Mechanical properties of the parts were illustrated by regression models generated with design of experiment (DOE) analysis. The results reported in this study were compared to previous studies, illustrating how the process parameters and powder characteristics could affect the quality of produced parts.


Sign in / Sign up

Export Citation Format

Share Document