scholarly journals Feature-guided Deep Subdomain Adaptation Network for Dataset Mismatch in Spatial Steganalysis

Author(s):  
Lei Zhang ◽  
Hongxia Wang ◽  
Peisong He ◽  
Sani M. Abdullahi ◽  
Bin Li

Abstract Steganalysis aims to detect covert communication established via steganography. In recent years, numerous deep learning-based image steganalysis methods with high performance have been proposed. However, these methods tend to suffer from distinct performance degradation when cover images in the train and test set are quite different, also known as cover source mismatch. To address this limitation, in this paper, a feature-guided deep subdomain adaptation network is proposed. Initially, the predictions of the pretrained model are used as pseudo labels to divide the unlabeled samples of the target domain into different subdomains, and the distributions of the relevant subdomains are aligned by subdomain adaptation. Afterwards, since the steganalysis model may assign incorrect predictions to samples in the target domain, we integrate guiding features to make the division of subdomains more precise. The experimental results show that the proposed network is significantly better than other three networks such as Steganalysis Residual Network (SRNet), deep adaptive network (J-Net) and Deep Subdomain Adaptation Network (DSAN), when it is used to detect three spatial steganographic algorithms with a wide variety of datasets and payloads. Especially, compared with SRNet, the average accuracy of our method is increased by 5.4% at 0.4bpp and 8.5% at 0.2bpp in the case of dataset mismatch.

10.29007/h46n ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
Minh Thanh Do ◽  
Gia Thinh Huynh ◽  
Anh Tu Tran ◽  
Trung Nghia Tran

Diabetic retinopathy (DR) is a complication of diabetes mellitus that causes retinal damage that can lead to vision loss if not detected and treated promptly. The common diagnosis stages of the disease take time, effort, and cost and can be misdiagnosed. In the recent period with the explosion of artificial intelligence, deep learning has become the most popular tool with high performance in many fields, especially in the analysis and classification of medical images. The Convolutional Neural Network (CNN) is more widely used as a deep learning method in medical imaging analysis with highly effective. In this paper, the five-stage image of modern DR (healthy, mild, moderate, severe, and proliferative) can be detected and classified using the deep learning technique. After cross-validation training and testing on the corresponding 5,590-image dataset, a pre-MobileNetV2 training model is proposed in classifying stages of diabetic retinopathy. The average accuracy of the model achieved was 93.89% with the precision of 94.00%, recall 92.00% and f1-score 90.00%. The corresponding thermal image is also given to help experts for evaluating the influence of the retina in each different stage.


2020 ◽  
Vol 12 (20) ◽  
pp. 3314
Author(s):  
Zhang Yubo ◽  
Yan Zhuoran ◽  
Yang Jiuchun ◽  
Yang Yuanyuan ◽  
Wang Dongyan ◽  
...  

In recent decades, land use/cover change (LUCC) due to urbanization, deforestation, and desertification has dramatically increased, which changes the global landscape and increases the pressure on the environment. LUCC not only accelerates global warming but also causes widespread and irreversible loss of biodiversity. Therefore, LUCC reconstruction has important scientific and practical value for studying environmental and ecological changes. The commonly used LUCC reconstruction models can no longer meet the growing demand for uniform and high-resolution LUCC reconstructions. In view of this circumstance, a deep learning-integrated LUCC reconstruction model (DLURM) was developed in this study. Zhenlai County of Jilin Province (1986–2013) was taken as an example to verify the proposed DLURM. The average accuracy of the DLURM reached 92.87% (compared with the results of manual interpretation). Compared with the results of traditional models, the DLURM had significantly better accuracy and robustness. In addition, the simulation results generated by the DLURM could match the actual land use (LU) map better than those generated by other models.


Author(s):  
Hatem Keshk ◽  
Xu-Cheng Yin

Background: Deep Learning (DL) neural network methods have become a hotspot subject of research in the remote sensing field. Classification of aerial satellite images depends on spectral content, which is a challenging topic in remote sensing. Objective: With the aim to accomplish a high performance and accuracy of Egyptsat-1 satellite image classification, the use of the Convolutional Neural Network (CNN) is raised in this paper because CNN is considered a leading deep learning method. CNN is developed to classify aerial photographs into land cover classes such as urban, vegetation, desert, water bodies, soil, roads, etc. In our work, a comparison between MAXIMUM Likelihood (ML) which represents the traditional supervised classification methods and CNN method is conducted. Conclusion: This research finds that CNN outperforms ML by 9%. The convolutional neural network has better classification result, which reached 92.25% as its average accuracy. Also, the experiments showed that the convolutional neural network is the most satisfactory and effective classification method applied to classify Egyptsat-1 satellite images.


2021 ◽  
Vol 9 ◽  
Author(s):  
Min Zhou ◽  
Kefei Wu ◽  
Lisha Yu ◽  
Mengdi Xu ◽  
Junjun Yang ◽  
...  

Leukemia is the most common malignancy affecting children. The morphologic analysis of bone marrow smears is an important initial step for diagnosis. Recent publications demonstrated that artificial intelligence is able to classify blood cells but a long way from clinical use. A total of 1,732 bone marrow images were used for the training of a convolutional neural network (CNN). New techniques of deep learning were integrated and an end-to-end leukemia diagnosis system was developed by using raw images without pre-processing. The system creatively imitated the workflow of a hematologist by detecting and excluding uncountable and crushed cells, then classifying and counting the remain cells to make a diagnosis. The performance of the CNN in classifying WBCs achieved an accuracy of 82.93%, precision of 86.07% and F1 score of 82.02%. And the performance in diagnosing acute lymphoid leukemia achieved an accuracy of 89%, sensitivity of 86% and specificity of 95%. The system also performs well at detecting the bone marrow metastasis of lymphoma and neuroblastoma, achieving an average accuracy of 82.93%. This is the first study which included a wider variety of cell types in leukemia diagnosis, and achieved a relatively high performance in real clinical scenarios.


2020 ◽  
Author(s):  
Sharon Zhou ◽  
Henrik Marklund ◽  
Ondrej Blaha ◽  
Manisha Desai ◽  
Brock Martin ◽  
...  

Aims: Deep learning (DL), a sub-area of artificial intelligence, has demonstrated great promise at automating diagnostic tasks in pathology, yet its translation into clinical settings has been slow. Few studies have examined its impact on pathologist performance, when embedded into clinical workflows. The identification of H. pylori on H&E stain is a tedious, imprecise task which might benefit from DL assistance. Here, we developed a DL assistant for diagnosing H. pylori in gastric biopsies and tested its impact on pathologist diagnostic accuracy and turnaround time. Methods and results: H&E-stained whole-slide images (WSI) of 303 gastric biopsies with ground truth confirmation by immunohistochemistry formed the study dataset; 47 and 126 WSI were respectively used to train and optimize our DL assistant to detect H. pylori, and 130 were used in a clinical experiment in which 3 experienced GI pathologists reviewed the same test set with and without assistance. On the test set, the assistant achieved high performance, with a WSI-level area-under-the-receiver-operating-characteristic curve (AUROC) of 0.965 (95% CI 0.934-0.987). On H. pylori-positive cases, assisted diagnoses were faster (β, the fixed effect size for assistance= -0.557, p=0.003) and much more accurate (OR=13.37, p<0.001) than unassisted diagnoses. However, assistance increased diagnostic uncertainty on H. pylori-negative cases, resulting in an overall decrease in assisted accuracy (OR=0.435, p=0.016) and negligible impact on overall turnaround time (β for assistance=0.010, p=0.860). Conclusions: DL can assist pathologists with H. pylori diagnosis, but its integration into clinical workflows requires optimization to mitigate diagnostic uncertainty as a potential consequence of assistance.


2020 ◽  
Vol 61 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Takafumi Nemoto ◽  
Natsumi Futakami ◽  
Masamichi Yagi ◽  
Atsuhiro Kumabe ◽  
Atsuya Takeda ◽  
...  

ABSTRACT This study aimed to examine the efficacy of semantic segmentation implemented by deep learning and to confirm whether this method is more effective than a commercially dominant auto-segmentation tool with regards to delineating normal lung excluding the trachea and main bronchi. A total of 232 non-small-cell lung cancer cases were examined. The computed tomography (CT) images of these cases were converted from Digital Imaging and Communications in Medicine (DICOM) Radiation Therapy (RT) formats to arrays of 32 × 128 × 128 voxels and input into both 2D and 3D U-Net, which are deep learning networks for semantic segmentation. The number of training, validation and test sets were 160, 40 and 32, respectively. Dice similarity coefficients (DSCs) of the test set were evaluated employing Smart SegmentationⓇ Knowledge Based Contouring (Smart segmentation is an atlas-based segmentation tool), as well as the 2D and 3D U-Net. The mean DSCs of the test set were 0.964 [95% confidence interval (CI), 0.960–0.968], 0.990 (95% CI, 0.989–0.992) and 0.990 (95% CI, 0.989–0.991) with Smart segmentation, 2D and 3D U-Net, respectively. Compared with Smart segmentation, both U-Nets presented significantly higher DSCs by the Wilcoxon signed-rank test (P &lt; 0.01). There was no difference in mean DSC between the 2D and 3D U-Net systems. The newly-devised 2D and 3D U-Net approaches were found to be more effective than a commercial auto-segmentation tool. Even the relatively shallow 2D U-Net which does not require high-performance computational resources was effective enough for the lung segmentation. Semantic segmentation using deep learning was useful in radiation treatment planning for lung cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Minghui Guo ◽  
Kangjian Wang ◽  
Shunlan Liu ◽  
Yongzhao Du ◽  
Peizhong Liu ◽  
...  

Ultrasound is one of the critical methods for diagnosis and treatment in thyroid examination. In clinical application, many reasons, such as large outpatient traffic, time-consuming training of sonographers, and uneven professional level of physicians, often cause irregularities during the ultrasonic examination, leading to misdiagnosis or missed diagnosis. In order to standardize the thyroid ultrasound examination process, this paper proposes using a deep learning method based on residual network to recognize the Thyroid Ultrasound Standard Plane (TUSP). At first, referring to multiple relevant guidelines, eight TUSP were determined with the advice of clinical ultrasound experts. A total of 5,500 TUSP images of 8 categories were collected with the approval and review of the Ethics Committee and the patient’s informed consent. Then, after desensitizing and filling the images, the 18-layer residual network model (ResNet-18) was trained for TUSP image recognition, and five-fold cross-validation was performed. Finally, through indicators like accuracy rate, we compared the recognition effect of other mainstream deep convolutional neural network models. Experimental results showed that ResNet-18 has the best recognition effect on TUSP images with an average accuracy rate of 91.07%. The average macro precision, average macro recall, and average macro F1-score are 91.39%, 91.34%, and 91.30%, respectively. It proves that the deep learning method based on residual network can effectively recognize TUSP images, which is expected to standardize clinical thyroid ultrasound examination and reduce misdiagnosis and missed diagnosis.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
R. Espinosa ◽  
M. M. Le Beau

We have shown previously that isotope-labelled nucleotides in human metaphase chromosomes can be detected and mapped by imaging secondary ion mass spectrometry (SIMS), using the University of Chicago high resolution scanning ion microprobe (UC SIM). These early studies, conducted with BrdU- and 14C-thymidine-labelled chromosomes via detection of the Br and 28CN- (14C14N-> labelcarrying signals, provided some evidence for the condensation of the label into banding patterns along the chromatids (SIMS bands) reminiscent of the well known Q- and G-bands obtained by conventional staining methods for optical microscopy. The potential of this technique has been greatly enhanced by the recent upgrade of the UC SIM, now coupled to a high performance magnetic sector mass spectrometer in lieu of the previous RF quadrupole mass filter. The high transmission of the new spectrometer improves the SIMS analytical sensitivity of the microprobe better than a hundredfold, overcoming most of the previous imaging limitations resulting from low count statistics.


1990 ◽  
Vol 29 (03) ◽  
pp. 167-181 ◽  
Author(s):  
G. Hripcsak

AbstractA connectionist model for decision support was constructed out of several back-propagation modules. Manifestations serve as input to the model; they may be real-valued, and the confidence in their measurement may be specified. The model produces as its output the posterior probability of disease. The model was trained on 1,000 cases taken from a simulated underlying population with three conditionally independent manifestations. The first manifestation had a linear relationship between value and posterior probability of disease, the second had a stepped relationship, and the third was normally distributed. An independent test set of 30,000 cases showed that the model was better able to estimate the posterior probability of disease (the standard deviation of residuals was 0.046, with a 95% confidence interval of 0.046-0.047) than a model constructed using logistic regression (with a standard deviation of residuals of 0.062, with a 95% confidence interval of 0.062-0.063). The model fitted the normal and stepped manifestations better than the linear one. It accommodated intermediate levels of confidence well.


Sign in / Sign up

Export Citation Format

Share Document