scholarly journals Positive Effects of Blue Light on Postural Control and Motor Coordination in Older Adults: A Pilot Study

Author(s):  
C. Martyn Beaven ◽  
Liis Uiga ◽  
Kim Hébert-Losier

Abstract Purpose: Falls are a risk factor for mortality in older adults. Light interventions can improve cognitive function and performance in motor tasks, but the potential impact on postural control with relevance to falling is unknown. This study aimed to examine the effect of light on postural control, motor coordination, and cognitive functioning. Methods: Sixteen older adults participated in an intervention study that involved four counter-balanced sessions with blue-enriched light delivered visually and/or transcranially for 12 minutes. Postural control in three conditions (60 s eyes open, dual-task, and eyes closed), lower extremity motor coordination, and cognitive function were assessed. Area of sway (AoS), coordination, and cognitive function were compared between the groups via repeated-measured ANOVA. Results: Relative to placebo, visual blue-enriched light exposure clearly decreased AoS (d = 0.68 ±0.73; p =0.166) and improved reaction time in the motor coordination task (d = 1.44 ±0.75; p =0.004); however, no significant effect was seen on cognitive function. Conclusion Blue-enriched light demonstrates a novel clinical approach to positively impact on postural control and lower-limb motor coordination in older adults. By impacting on metrics associated with fall risk, blue-enriched light may provide a clinically meaningful countermeasure to decrease the human costs of falls.

Author(s):  
Niklas Sörlén ◽  
Andreas Hult ◽  
Peter Nordström ◽  
Anna Nordström ◽  
Jonas Johansson

Abstract Background We aimed to determine the effectiveness of 4 weeks of balance exercise compared with no intervention on objectively measured postural sway. Methods This was a single-center parallel randomized controlled, open label, trial. A six-sided dice was used for allocation at a 1:1-ratio between exercise and control. The trial was performed at a university hospital clinic in Sweden and recruited community-dwelling older adults with documented postural instability. The intervention consisted of progressively challenging balance exercise three times per week, during 4 weeks, with follow-up at week five. Main outcome measures were objective postural sway length during eyes open and eyes closed conditions. Results Sixty-five participants aged 70 years (balance exercise n = 32; no intervention n = 33) were randomized. 14 participants were excluded from analysis because of early dropout before follow-up at week five, leaving 51 (n = 22; n = 29) participants for analysis. No significant differences were detected between the groups in any of the postural sway outcomes. Within-group analyses showed significant improvements in hand grip strength for the intervention group, while Timed Up & Go improvements were comparable between groups but only statistically significant in the control group. Conclusions Performing balance exercise over a four-week intervention period did not acutely improve postural sway in balance-deficient older adults. The lower limit in duration and frequency to achieve positive effects remains unclear. Trial registration Clinical trials NCT03227666, July 24, 2017, retrospectively registered.


2003 ◽  
Vol 13 (1) ◽  
pp. 39-52 ◽  
Author(s):  
F. Stål ◽  
P.A. Fransson ◽  
M. Magnusson ◽  
M. Karlberg

The aim of this study was to investigate the significance of information from the plantar cutaneous mechanoreceptors in postural control and whether postural control could compensate for reduced cutaneous information by adaptation. Sixteen healthy subjects were tested with eyes open or eyes closed with hypothermic and normal feet temperature during posturography where body sway was induced by vibratory proprioceptive stimulation towards both calf muscles. The hypothermic anesthesia was obtained by cooling the subject's feet in ice water for 20 minutes. Body movements were evaluated by analyzing the anteroposterior and lateral torques induced towards the supporting surface by a force platform during the posturography tests. The reduction of cutaneous sensor information from the mechanoreceptors of the feet significantly increased the vibration-induced torque variance mainly in the anteroposterior direction. However, the effects of disturbed mechanoreceptors information was rapidly compensated for through postural adaptation and torque variance was in level with that without anesthesia within 50 to 100 seconds of stimulation, both when standing with eyes open and eyes closed. Our findings suggest that somatosensory input from mechanoreceptors in the foot soles contribute significantly in maintaining postural control, but the sensory loss could be compensated for.


2021 ◽  
Vol 4 (1) ◽  
pp. 013-022
Author(s):  
Blanchet Mariève ◽  
Prince François ◽  
Lemay Martin ◽  
Chouinard Sylvain ◽  
Messier Julie

We explored if adolescents with Gilles de la Tourette syndrome (GTS) had functional postural control impairments and how these deficits are linked to a disturbance in the processing and integration of sensory information. We evaluated the displacements of the center of pressure (COP) during maximal leaning in four directions (forward, backward, rightward, leftward) and under three sensory conditions (eyes open, eyes closed, eyes closed standing on foam). GTS adolescents showed deficits in postural stability and in lateral postural adjustments but they had similar maximal COP excursion than the control group. The postural performance of the GTS group was poorer in the eyes open condition (time to phase 1 onset, max-mean COP). Moreover, they displayed a poorer ability to maintain the maximum leaning position under the eyes open condition during mediolateral leaning tasks. By contrast, during forward leaning, they showed larger min-max ranges than control subjects while standing on the foam with the eyes closed. Together, these findings support the idea that GTS produces subclinical postural control deficits. Importantly, our results suggest that postural control disorders in GTS are highly sensitive to voluntary postural leaning tasks which have high demand for multimodal sensory integration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Seiki Tokunaga ◽  
Kazuhiro Tamura ◽  
Mihoko Otake-Matsuura

As the elderly population grows worldwide, living a healthy and full life as an older adult is becoming a topic of great interest. One key factor and severe challenge to maintaining quality of life in older adults is cognitive decline. Assistive robots for helping older adults have been proposed to solve issues such as social isolation and dependent living. Only a few studies have reported the positive effects of dialogue robots on cognitive function but conversation is being discussed as a promising intervention that includes various cognitive tasks. Existing dialogue robot-related studies have reported on placing dialogue robots in elderly homes and allowing them to interact with residents. However, it is difficult to reproduce these experiments since the participants’ characteristics influence experimental conditions, especially at home. Besides, most dialogue systems are not designed to set experimental conditions without on-site support. This study proposes a novel design method that uses a dialogue-based robot system for cognitive training at home. We define challenges and requirements to meet them to realize cognitive function training through daily communication. Those requirements are designed to satisfy detailed conditions such as duration of dialogue, frequency, and starting time without on-site support. Our system displays photos and gives original stories to provide contexts for dialogue that help the robot maintain a conversation for each story. Then the system schedules dialogue sessions along with the participant’s plan. The robot moderates the user to ask a question and then responds to the question by changing its facial expression. This question-answering procedure continued for a specific duration (4 min). To verify our design method’s effectiveness and implementation, we conducted three user studies by recruiting 35 elderly participants. We performed prototype-, laboratory-, and home-based experiments. Through these experiments, we evaluated current datasets, user experience, and feasibility for home use. We report on and discuss the older adults’ attitudes toward the robot and the number of turns during dialogues. We also classify the types of utterances and identify user needs. Herein, we outline the findings of this study, outlining the system’s essential characteristics to experiment toward daily cognitive training and explain further feature requests.


2022 ◽  
pp. 1-10
Author(s):  
Audrey Parent ◽  
Laurent Ballaz ◽  
Bahare Samadi ◽  
Maria Vocos, pht ◽  
Alain Steve Comtois ◽  
...  

Background: Myotonic dystrophy type 1 (DM1) is characterized by progressive and predominantly distal muscle atrophy and myotonia. Gait and balance impairments, resulting in falls, are frequently reported in this population. However, the extent to which individuals with DM1 rely more on a specific sensory system for balance than asymptomatic individuals (AI) is unknown. Objective: Evaluate postural control performance in individuals with DM1 and its dependence on vision compared to AI. Methods: 20 participants with DM1, divided into two groups based on their diagnosis, i.e. adult and congenital phenotype, and 12 AI participants were recruited. Quiet standing postural control was assessed in two visual conditions: eyes-open and eyes-closed. The outcomes measures were center of pressure (CoP) mean velocity, CoP range of displacement in anteroposterior and mediolateral axis, and the 95% confidence ellipse’s surface. Friedman and Kruskal-Wallis analysis of variance were used to compare outcomes between conditions and groups, respectively. Results: Significant group effect and condition effect were observed on postural control performance. No significant difference was observed between the two DM1 groups. The significant differences observed between the AI group and the two DM1 groups in the eyes-open condition were also observed in the eyes-closed condition. Conclusions: The result revealed poorer postural control performance in people with DM1 compared to AI. The DM1 group also showed similar decrease in performance than AI in eyes-closed condition, suggesting no excessive visual dependency.


2014 ◽  
Vol 94 (2) ◽  
pp. 236 ◽  
Author(s):  
Robert J. Barry ◽  
Frances M. De Blasio ◽  
Adele E. Cave
Keyword(s):  

2020 ◽  
Vol 16 (4) ◽  
pp. 621-629
Author(s):  
Patrick J. Sparto ◽  
Andrea L. Rosso ◽  
Ayushi A. Divecha ◽  
Andrea L. Metti ◽  
Caterina Rosano

1999 ◽  
Vol 58 (6) ◽  
pp. 640-644
Author(s):  
Hideyuki Okuzumi ◽  
Taketo Furuna ◽  
Satoshi Nishizawa ◽  
Miho Sugiura

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7513 ◽  
Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Background It is known that adolescent idiopathic scoliosis (AIS) is often accompanied by balance deficits. This reciprocal relationship must be taken into account when prescribing new therapeutic modalities because these may differently affect postural control, interacting with therapy and influencing its results. Objective The purpose was to compare postural control in girls with AIS while wearing the Chêneau brace (BRA) or performing active self-correction (ASC) with their postural control in a quiet comfortable stance. Methods Nine subjects were evaluated on a force plate in three series of two 20-s quiet standing trials with eyes open or closed; three blocks were randomly arranged: normal quiet stance (QST), quiet stance with BRA, and quiet stance with ASC. On the basis of centre-of-pressure (COP) recordings, the spatial and temporal COP parameters were computed. Results and Discussion Performing ASC was associated with a significant backward excursion of the COP mean position with eyes open and closed (ES = 0.56 and 0.65, respectively; p < 0.05). This excursion was accompanied by an increase in the COP fractal dimension (ES = 1.05 and 0.98; p < 0.05) and frequency (ES = 0.78; p = 0.10 and ES = 1.14; p < 0.05) in the mediolateral (ML) plane. Finally, both therapeutic modalities decreased COP sample entropy with eyes closed in the anteroposterior (AP) plane. Wearing BRA resulted in ES = 1.45 (p < 0.05) while performing ASC in ES = 0.76 (p = 0.13). Conclusion The observed changes in the fractal dimension (complexity) and frequency caused by ASC account for better adaptability of patients to environmental demands and for their adequate resources of available postural strategies in the ML plane. These changes in sway structure were accompanied by a significant (around 25 mm) backward excursion of the mean COP position. However, this improvement was achieved at the cost of lower automaticity, i.e. higher attentional involvement in postural control in the AP plane. Wearing BRA may have an undesirable effect on some aspects of body balance.


2020 ◽  
Vol 14 (2) ◽  
pp. 98-107
Author(s):  
Clara Narcisa Silva Almeida ◽  
Rayane Alves da Costa ◽  
Kaio Primo Manso ◽  
Juliana Figueiredo Ferreira ◽  
Bianca Callegari ◽  
...  

OBJECTIVE: To compare balance between older adults with and without chronic obstructive pulmonary disease (COPD) in tasks involving proprioceptive changes and respiratory muscle load, and to investigate the association between balance, functional capacity, and peripheral and respiratory muscle strength. METHODS: Fourteen older adults with COPD undergoing pulmonary rehabilitation and nine older adults without pulmonary disease were evaluated for static balance on a force platform under four conditions: eyes open, eyes closed, eyes closed on foam, and eyes open with respiratory overload. Differences between groups, among conditions and group/condition interactions, were tested using two-way ANOVA. Associations were explored using Pearson’s correlation coefficient. RESULTS: No differences in the posturographic variables were found in the group/condition interactions (p ≥ 0.23). The COPD group exhibited greater total displacement (F = 8.79, p = 0.003), mediolateral sway (F = 4.01, p = 0.04) and anteroposterior velocity (F = 4.28, p = 0.04) in the group effect analysis. Significant differences were found between eyes closed on foam and other conditions for all posturographic variables: anteroposterior sway (F = 13.39), mediolateral sway (F = 28.58), total displacement (F = 59.4), area (F = 37.68), anteroposterior velocity (F = 26.42), and mediolateral velocity (F = 33.29), in the condition effect analysis (p < 0.001, post-hoc). In the COPD group, significant correlations were found between the Glittre-ADL test, anteroposterior sway (r = 0.68, p = 0.01), and anteroposterior velocity (r = 0.67, p = 0.009); the 6MWT was also correlated with anteroposterior velocity (r = 0.59, p = 0.03). CONCLUSION: Older adults with COPD present balance deficits compared to healthy individuals. The unstable surface caused greater postural instability compared to other conditions in both groups. Impaired balance was associated with reduced physical function and exercise capacity.


Sign in / Sign up

Export Citation Format

Share Document