scholarly journals Extending applications of AFM to fluidic AFM in single living cell and extracellular vesicle studies

Author(s):  
Yuan Qiu ◽  
Chen-Chi Chien ◽  
Basilis Maroulis ◽  
Angelo Gaitas ◽  
Bin Gong

Abstract In this article, a review of the application of atomic force microscopy (AFM) for the analyses of extracellular vesicles is presented. This information is then extended to include fluidic Atomic Force Microscopy (fluidic AFM) applications. Fluidic AFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. AFM applications involving single cell and extracellular vesicle studies, colloidal force spectroscopy, and single cell adhesion measurements are discussed. In this review, new results are offered, using fluidic AFM, to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces (LBFs) of endothelial or epithelial cells in a confluent cell monolayer in appropriate physiological environment, and (3) the ease of measurement of vertical binding force (VBFs) of intercellular adhesion between heterogeneous cells. Finally, key applications are discussed that include extracellular vesicle absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.

Author(s):  
Hyonchol Kim ◽  
Hironori Uehara ◽  
Rehana Afrin ◽  
Hiroshi Sekiguchi ◽  
Hideo Arakawa ◽  
...  

Nanomedicine ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. 1625-1637 ◽  
Author(s):  
Xiaoli Shi ◽  
Xuejie Zhang ◽  
Tie Xia ◽  
Xiaohong Fang

2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lukas Stühn ◽  
Julia Auernhammer ◽  
Christian Dietz

AbstractFerritin, a protein that is present in the human body for a controlled iron storage and release, consists of a ferrihydrite core and a protein shell. Apoferritin, the empty shell of ferritin, can be modified to carry tailored properties exploitable for targeted and direct drug delivery. This protein shell has the ability to dis- and reassemble depending on the pH value of the liquid environment and can thus be filled with the desired substance. Here we observed the dis- and reassembly process of the protein shell of ferritin and apoferritin in situ and in real space using atomic force microscopy. Ferritin and apoferritin nanoparticles adsorbed on a mica substrate exhibited a change in their size by varying the pH value of the surrounding medium. Lowering the pH value of the solution led to a decrease in size of the nanoparticles whereas a successive increase of the pH value increased the particle size again. The pH dependent change in size could be related to the dis- and reassembling of the protein shell of ferritin and apoferritin. Supplementary imaging by bimodal magnetic force microscopy of ferritin molecules accomplished in air revealed a polygonal shape of the core and a three-fold symmetry of the protein shell providing valuable information about the substructure of the nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document