scholarly journals Modeling Space Radiation Induced Cognitive Dysfunction Using Targeted And Non-Targeted Effects

Author(s):  
Igor Shuryak ◽  
David Brenner ◽  
Steven Blattnig ◽  
Barbara Shukitt-Hale ◽  
Bernard Rabin

Abstract Radiation-induced cognitive dysfunction is increasingly recognized as an important risk for human exploration of distant planets. Mechanistically-motivated mathematical modeling helps to interpret and quantify this phenomenon. Here we considered two general mechanisms of ionizing radiation-induced damage: targeted effects (TE), caused by traversal of cells by ionizing tracks, and non-targeted effects (NTE), caused by responses of other cells to signals released by traversed cells. We compared the performances of 18 dose response model variants based on these concepts, fitted by robust nonlinear regression to a large published data set on novel object recognition testing in rats exposed to multiple space-relevant radiation types (H, C, O, Si, Ti and Fe ions), covering wide ranges of linear energy transfer (LET) (0.22-181 keV/µm) and dose (0.001-2 Gy). The strongest support (by Akaike information criterion) was found for an NTE+TE model where NTE saturate at low doses (~0.01 Gy) and occur at all tested LETs, whereas TE depend on dose linearly with a slope that increases with LET. The importance of NTE was also found by additional analyses of the data using quantile regression and random forests. These results suggest that NTE-based radiation effects on brain function are potentially important for astronaut health and for space mission risk assessments.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Shuryak ◽  
David J. Brenner ◽  
Steven R. Blattnig ◽  
Barbara Shukitt-Hale ◽  
Bernard M. Rabin

AbstractRadiation-induced cognitive dysfunction is increasingly recognized as an important risk for human exploration of distant planets. Mechanistically-motivated mathematical modeling helps to interpret and quantify this phenomenon. Here we considered two general mechanisms of ionizing radiation-induced damage: targeted effects (TE), caused by traversal of cells by ionizing tracks, and non-targeted effects (NTE), caused by responses of other cells to signals released by traversed cells. We compared the performances of 18 dose response model variants based on these concepts, fitted by robust nonlinear regression to a large published data set on novel object recognition testing in rats exposed to multiple space-relevant radiation types (H, C, O, Si, Ti and Fe ions), covering wide ranges of linear energy transfer (LET) (0.22–181 keV/µm) and dose (0.001–2 Gy). The best-fitting model (based on Akaike information criterion) was an NTE + TE variant where NTE saturate at low doses (~ 0.01 Gy) and occur at all tested LETs, whereas TE depend on dose linearly with a slope that increases with LET. The importance of NTE was also found by additional analyses of the data using quantile regression and random forests. These results suggest that NTE-based radiation effects on brain function are potentially important for astronaut health and for space mission risk assessments.


2016 ◽  
Vol 22 (6) ◽  
pp. 1099-1117 ◽  
Author(s):  
Boyd A. Nicholds ◽  
John P.T. Mo

Purpose The research indicates there is a positive link between the improvement capability of an organisation and the intensity of effort applied to a business process improvement (BPI) project or initiative. While a degree of stochastic variation in applied effort to any particular improvement project may be expected there is a clear need to quantify the causal relationship, to assist management decision, and to enhance the chance of achieving and sustaining the expected improvement targets. The paper aims to discuss these issues. Design/methodology/approach The paper presents a method to obtain the function that estimates the range of applicable effort an organisation can expect to be able to apply based on their current improvement capability. The method used analysed published data as well as regression analysis of new data points obtained from completed process improvement projects. Findings The level of effort available to be applied to a process improvement project can be expressed as a regression function expressing the possible range of achievable BPI performance within 90 per cent confidence limits. Research limitations/implications The data set applied by this research is limited due to constraints during the research project. A more accurate function can be obtained with more industry data. Practical implications When the described function is combined with a separate non-linear function of performance gain vs effort a model of performance gain for a process improvement project as a function of organisational improvement capability is obtained. The probability of success in achieving performance targets may be estimated for a process improvement project. Originality/value The method developed in this research is novel and unique and has the potential to be applied to assessing an organisation’s capability to manage change.


2008 ◽  
Vol 06 (02) ◽  
pp. 261-282 ◽  
Author(s):  
AO YUAN ◽  
WENQING HE

Clustering is a major tool for microarray gene expression data analysis. The existing clustering methods fall mainly into two categories: parametric and nonparametric. The parametric methods generally assume a mixture of parametric subdistributions. When the mixture distribution approximately fits the true data generating mechanism, the parametric methods perform well, but not so when there is nonnegligible deviation between them. On the other hand, the nonparametric methods, which usually do not make distributional assumptions, are robust but pay the price for efficiency loss. In an attempt to utilize the known mixture form to increase efficiency, and to free assumptions about the unknown subdistributions to enhance robustness, we propose a semiparametric method for clustering. The proposed approach possesses the form of parametric mixture, with no assumptions to the subdistributions. The subdistributions are estimated nonparametrically, with constraints just being imposed on the modes. An expectation-maximization (EM) algorithm along with a classification step is invoked to cluster the data, and a modified Bayesian information criterion (BIC) is employed to guide the determination of the optimal number of clusters. Simulation studies are conducted to assess the performance and the robustness of the proposed method. The results show that the proposed method yields reasonable partition of the data. As an illustration, the proposed method is applied to a real microarray data set to cluster genes.


2011 ◽  
Vol 61 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Wen Bo Liao ◽  
Zhi Ping Mi ◽  
Cai Quan Zhou ◽  
Ling Jin ◽  
Xian Han ◽  
...  

AbstractComparative studies of the relative testes size in animals show that promiscuous species have relatively larger testes than monogamous species. Sperm competition favours the evolution of larger ejaculates in many animals – they give bigger testes. In the view, we presented data on relative testis mass for 17 Chinese species including 3 polyandrous species. We analyzed relative testis mass within the Chinese data set and combining those data with published data sets on Japanese and African frogs. We found that polyandrous foam nesting species have relatively large testes, suggesting that sperm competition was an important factor affecting the evolution of relative testes size. For 4 polyandrous species testes mass is positively correlated with intensity (males/mating) but not with risk (frequency of polyandrous matings) of sperm competition.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii83-ii83
Author(s):  
Nilan Vaghjiani ◽  
Andrew Schwieder ◽  
Sravya Uppalapati ◽  
Zachary Kons ◽  
Elizabeth Kazarian ◽  
...  

Abstract PURPOSE Radiation-induced meningiomas (RIMs) are associated with previous exposure to therapeutic irradiation. RIMs are rare and have not been well characterized relative to spontaneous meningiomas (SMs). METHODS 1003 patients with proven or presumed meningiomas were identified from the VCU brain tumor database. Chart review classified RIM patients and their characteristics. RESULTS Of the 1003 total patients, 76.47% were female with a mean ± SD age of 67.55 ± 15.50 years. 15 RIM patients were identified (66.67% female), with a mean ± SD age of 52.67 ± 15.46 years, 5 were African American and 10 were Caucasian. The incidence of RIMs was 1.49% in our data set. The mean age at diagnosis was 43.27 ± 15.06 years. The mean latency was 356.27 ± 116.96 months. The mean initiating dose was 44.28 ± 14.68 Gy. There was a significant difference between mean latency period and ethnicity, 258.3 months for African American population, and 405.2 months for Caucasian population (p = 0.003). There was a significant difference between the mean number of lesions in females (2.8) versus males (1.2; p = 0.046). Of the RIMs with characterized histology, 6 (55%) were WHO grade II and 5 (45%) were WHO grade I, demonstrating a prevalence of grade II tumors approximately double that found with SMs. RIMs were treated with combinations of observation, surgery, radiation, and medical therapy. Of the 8 patients treated with radiation, 4 demonstrated response. 8 of the 15 patients (53%) demonstrated recurrence/progression despite treatment. CONCLUSION RIMs are important because of the associated higher grade histology, gender, and ethnic incidences, and increased recurrence/progression compared to SMs. Despite the presumed contributory role of prior radiation, RIMs demonstrate a significant rate of responsiveness to radiation treatment.


2021 ◽  
Author(s):  
Side Song ◽  
Guozhu Liu ◽  
Qi He ◽  
Xiang Gu ◽  
Genshen Hong ◽  
...  

Abstract In this paper, the combined effects of cycling endurance and radiation on floating gate memory cell are investigated in detail, the results indicate that: 1.The programmed flash cells with a prior appropriate number of program and erase cycling stress exhibit much smaller threshold voltage shift than their counterpart in response to radiation, which is mainly ascribed to the recombination of trapped electrons (introduced by cycling stress) and trapped holes (introduced by irradiation) in the oxide surrounding the floating gate; 2.The radiation induced transconductance degradation in prior cycled flash cell is more severe than those without cycling stress in both of the programmed state and erased state; 3. Radiation is more likely to induce interface generation in programmed state than in erased state. This paper will be useful in understanding the issues involved in cycling endurance and radiation effects as well as in designing radiation hardened floating gate memory cells.


2017 ◽  
Vol 7 (1) ◽  
pp. 72 ◽  
Author(s):  
Lamya A Baharith

Truncated type I generalized logistic distribution has been used in a variety of applications. In this article, a new bivariate truncated type I generalized logistic (BTTGL) distributional models driven from three different copula functions are introduced. A study of some properties is illustrated. Parametric and semiparametric methods are used to estimate the parameters of the BTTGL models. Maximum likelihood and inference function for margin estimates of the BTTGL parameters are compared with semiparametric estimates using real data set. Further, a comparison between BTTGL, bivariate generalized exponential and bivariate exponentiated Weibull models is conducted using Akaike information criterion and the maximized log-likelihood. Extensive Monte Carlo simulation study is carried out for different values of the parameters and different sample sizes to compare the performance of parametric and semiparametric estimators based on relative mean square error.


2017 ◽  
Vol 3 (5) ◽  
pp. e192 ◽  
Author(s):  
Corina Anastasaki ◽  
Stephanie M. Morris ◽  
Feng Gao ◽  
David H. Gutmann

Objective:To ascertain the relationship between the germline NF1 gene mutation and glioma development in patients with neurofibromatosis type 1 (NF1).Methods:The relationship between the type and location of the germline NF1 mutation and the presence of a glioma was analyzed in 37 participants with NF1 from one institution (Washington University School of Medicine [WUSM]) with a clinical diagnosis of NF1. Odds ratios (ORs) were calculated using both unadjusted and weighted analyses of this data set in combination with 4 previously published data sets.Results:While no statistical significance was observed between the location and type of the NF1 mutation and glioma in the WUSM cohort, power calculations revealed that a sample size of 307 participants would be required to determine the predictive value of the position or type of the NF1 gene mutation. Combining our data set with 4 previously published data sets (n = 310), children with glioma were found to be more likely to harbor 5′-end gene mutations (OR = 2; p = 0.006). Moreover, while not clinically predictive due to insufficient sensitivity and specificity, this association with glioma was stronger for participants with 5′-end truncating (OR = 2.32; p = 0.005) or 5′-end nonsense (OR = 3.93; p = 0.005) mutations relative to those without glioma.Conclusions:Individuals with NF1 and glioma are more likely to harbor nonsense mutations in the 5′ end of the NF1 gene, suggesting that the NF1 mutation may be one predictive factor for glioma in this at-risk population.


Epigenomics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 385-396 ◽  
Author(s):  
Junjun Zhang ◽  
Junyan Li ◽  
Yiwen Zhu ◽  
Zhigang Miao ◽  
Ye Tian

Aim: Roles of forced running exercise (FE) in remediation of neurogenesis inhibition and radiation-induced cognitive dysfunction were investigated in a whole-brain irradiation mice model via the regulation of DNA 5-hydroxymethylation modification (5 hmC) and its catalytic enzymes ten–eleven translocation (Tet) proteins. Materials & methods: Hippocampal neurogenesis and cognitive function, DNA 5 hmC level and Tet expression were determined in mice. Results: The expression of DNA 5 hmC and Tet2, brain-derived neurotrophic factor significantly decreased in hippocampus postradiation. FE mitigated radiation-induced neurogenesis deficits and cognitive dysfunction. Furthermore, FE increased 5 hmC and brain-derived neurotrophic factor expression. SC1, a Tet inhibitor, reversed partly such changes. Conclusion: Tet-mediated 5 hmC modification represents a kind of diagnostic biomarkers of radiation-induced cognitive dysfunction. Targeting Tet-related epigenetic modification may be a novel therapeutic strategy for radiation-induced brain injury.


2011 ◽  
Vol 26 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Milos Vujisic ◽  
Dusan Matijasevic ◽  
Edin Dolicanin ◽  
Predrag Osmokrovic

This paper investigates possible effects of alpha particle and ion beam irradiation on the properties of the superinsulating phase, recently observed in titanium nitride films, by using numerical simulation of particle transport. Unique physical properties of the superinsulating state are considered by relying on a two-dimensional Josephson junction array as a model of material structure. It is suggested that radiation-induced change of the Josephson junction charging energy would not affect the current-voltage characteristics of the superinsulating film significantly. However, it is theorized that a relapse to an insulating state with thermally activated resistance is possible, due to radiation-induced disruption of the fine-tuned granular structure. The breaking of Cooper pairs caused by incident and displaced ions may also destroy the conditions for a superinsulating phase to exist. Finally, even the energy loss to phonons can influence the superinsulating state, by increasing the effective temperature of the phonon thermostat, thereby reestablishing means for an energy exchange that can support Cooper pair tunneling.


Sign in / Sign up

Export Citation Format

Share Document