scholarly journals Graphene Nano-Fiber Composites for Enhanced Neuronal Differentiation of Human Mesenchymal Stem Cells†

Author(s):  
Sujata Mohanty ◽  
Krishan Gopal Jain ◽  
Sonali Rawat ◽  
Deepika Gupta ◽  
Pawan Raghav ◽  
...  

Abstract Graphene-based nanocomposites have been extensively employed to design biomimetic platforms epitomizing the structural and functional complexity of the tissue with increased robustness and physiological relevance. The adhesive and mechanical cues provided by such nanocomposite microenvironment kindles the cell fate decisions. Owing to their differentiation and regenerative potential, Human Mesenchymal Stem Cells (hMSCs) have proven to be a promising candidate for treating several neurodegenerative disorders. However, their degree of differentiation and its reproducibility is often jeopardized by multiple levels of heterogeneity, thereby compromising their translational utilization. Baffled at this crossroad, we designed a one-step approach to electrospin Poly-caprolactone (PCL) nanocomposite, with varying graphene concentrations, to capture, for the first time, the realms of their biocompatible and anisotropic characteristics, providing biomimetic platforms for improved differentiation of human bone marrow-derived MSCs (hMSCs) into neurons. Interestingly, PCL having 0.05% graphene (PCL-G0.05) showcased an ideal nano-topography with an unprecedented combination of guidance stimuli and substrates cues, aiding in enhanced differentiation of hMSCs into dopaminergic neurons (DA). These newly differentiated DA neurons were characterized at gene, protein, and functional levels and were seen to exhibit unique neuronal arborization, enhanced intracellular Ca2+ influx, and dopamine secretion, thereby opening new horizons for pre-clinical and clinical applications.

Nanomedicine ◽  
2021 ◽  
Author(s):  
Sonali Rawat ◽  
Krishan Gopal Jain ◽  
Deepika Gupta ◽  
Pawan Kumar Raghav ◽  
Rituparna Chaudhuri ◽  
...  

Aim: To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite. Methods: A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation. Results: PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca2+ influx and dopamine secretion. Conclusion: Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.


2021 ◽  
Author(s):  
Azita Asadi ◽  
Farjam Goudarzi ◽  
Mustafa Ghanadian ◽  
Adel Mohammadalipour

Abstract Background: The stimulating effects of apigenin on mesenchymal stem cells (MSCs) osteogenesis, as well as the anti-inflammatory effect of this flavonoid, have been identified. In this study, osteogenic differentiation was investigated under inflammatory conditions and treatment with apigenin. Methods and Results: Along with osteogenic differentiation of MSCs, they became inflamed with LPS/PA, and treated simultaneously with apigenin. The degree of differentiation was assessed by alizarin red staining and alkaline phosphatase (ALP) activity. Also, gene expression of NLRP3 and RUNX2 was performed along with protein expression of IL-1β. Significant increase in NLRP3 and IL-1β were observed in MSCs when exposed to LPS/PA (p<0.01). Also, the osteogenesis was significantly decreased (p<0.01). Apigenin treatment induced significantly higher gene expression of RUNX2, the activity of ALP, and cell staining (p<0.01) which were also associated with reduced inflammation in these cells. Conclusions: The effectiveness of apigenin on osteogenesis under inflammatory conditions was cautiously observed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Taeui Hong ◽  
Moon Young Kim ◽  
Dat Da Ly ◽  
Su Jung Park ◽  
Young Woo Eom ◽  
...  

Abstract Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Christiaan H. Righolt ◽  
Vered Raz ◽  
Bart J. Vermolen ◽  
Roeland W. Dirks ◽  
Hans J. Tanke ◽  
...  

The nuclear lamina is an intermediate filament network that provides a structural framework for the cell nucleus. Changes in lamina structure are found during changes in cell fate such as cell division or cell death and are associated with human diseases. An unbiased method that quantifies changes in lamina shape can provide information on cells undergoing changes in cellular functions. We have developed an image processing methodology that finds and quantifies the 3D structure of the nuclear lamina. We show that measurements on such images can be used for cell classification and provide information concerning protein spatial localization in this structure. To demonstrate the efficacy of this method, we compared the lamina of unmanipulated human mesenchymal stem cells (hMSCs) at passage 4 to cells activated for apoptosis. A statistically significant classification was found between the two populations.


2006 ◽  
Vol 32 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Lianhua Bai ◽  
Arnold Caplan ◽  
Donald Lennon ◽  
Robert H. Miller

2021 ◽  
Vol 22 (3) ◽  
pp. 1447
Author(s):  
Gloria Belén Ramírez-Rodríguez ◽  
Ana Rita Pereira ◽  
Marietta Herrmann ◽  
Jan Hansmann ◽  
José Manuel Delgado-López ◽  
...  

In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.


2020 ◽  
Author(s):  
Taeui Hong ◽  
Moon Young Kim ◽  
Dat Da Ly ◽  
Su Jung Park ◽  
Young Woo Eom ◽  
...  

Abstract Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.


2020 ◽  
Author(s):  
Taeui Hong ◽  
Moon Young Kim ◽  
Dat Da Ly ◽  
Su Jung Park ◽  
Young Woo Eom ◽  
...  

Abstract Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document