scholarly journals Heterosis and combining ability studies by Line × tester analysis for fruit biochemical, morpho-physiological, and yield traits governing shelf life in tomato (Solanum lycopersicum L.)

Author(s):  
pavan MP ◽  
Gangaprasad S ◽  
Dushyanthakumar B M ◽  
Nagrajappa Adivappar

Abstract Improving tomatoes keeping quality is crucial for reducing post-harvest losses. Knowledge on heterosis, and combining ability is pre requisite for breeding high yielding and good shelf life heterotic hybrids. An investigation was undertaken with each of 3 lines, testers, and 9 hybrids to identify desirable parents and crosses for 20 fruit biochemical, morpho-physiological, and yield traits and to elucidate nature of gene action for shelf life and its contributing traits through Line × Tester analysis. The lines contributed to most of hybrids variability than testers and fruit quality traits had higher degree of SCA variance as compared to GCA variance. pH, ascorbic acid, fruit firmness, and plant height governed by additive gene action. Lycopene, titratable acidity, TSS, calcium, magnesium, pericarp thickness, pulp content, locule number, fruit length, diameter, weight, shelf life, number of branches, number of clusters, number of fruit/cluster, and yield/plant were under the control of non-additive gene action. All the lines and Arka Saurabh were best general combiners and IIHR 2349 × Arka Vikas, IIHR 2349 × Arka Saurabh, IIHR 2358 × Arka Ahuti and IIHR 2357 × Arka Ahuti were the best specific combiner in producing heterotic hybrids. IIHR 2349 × Arka Vikas and IIHR 2349 × Arka Saurabh were promising hybrids for high yield and shelf life. The crosses involved both parents with high, one parent with high and other with low and both parents with low good overall general combining ability status respectively indicated the additive, non-additive and epistatic gene action in fruit quality and yield traits inheritance.

Author(s):  
Durgesh Kumar Shukla ◽  
S. N. Singh ◽  
S. C. Gaur ◽  
Anil Kumar

Information on combining ability is derived from data on twelve yield and yield contributing characters in fifteen male and three female parents utilised in line x tester fashion to estimate combining ability of rice genotypes under coastal saline condition. Forty Five hybrids generated from crossing three lines with fifteen testers were studied along with their parents for combining ability and gene action involved in the expression of characters in rice. The gca and sca effects were significant for all the characters. The magnitude of sca variance was higher than the gca variance for all the characters revealed the presence of predominance of non-additive gene action for all the characters under study. Halchal (-12.29) was found to be good general combiners for days to 50% flowering and early maturity, Halchal (-13.39). However, IR-24 (1.88) was good general combiners with significant positive effect for tallness. Magic (-12.05) good general combiners for dwarfness and Shriram 434 (1.57) was good general combiners for test weight however, Moti was best general combiner with gca estimates of 7.07 for harvest index and Kuber (3.48) was the good general combiners for yield/hill. Cross combinations RHR 27 x IR 24 (4.04) was significant and positive effect for yield/hill, performance for ear bearing tillers per plant were RHR 27 x IR 24 (1.88). In general, the crosses showing significant and desirable combining ability effects were associated with better per se performance for the respective traits. These hybrids could be utilized in heterosis breeding to exploit hybrid vigour.


2017 ◽  
Vol 45 (2) ◽  
pp. 517-524
Author(s):  
Sorin CIULCA ◽  
Natalia CARP ◽  
Emilian MADOŞA ◽  
Adriana CIULCA ◽  
Radu ŞUMĂLAN

Information on the inheritance of yield and quality traits is important for the selection of parents and breeding approaches to be adopted for the improvement of strawberry. The present study aimed to estimate the combining ability and gene effects for plant yield, fruits number/plant, fruit weight, pulp firmness and sugar content of strawberries in order to identify the best genitors and promising crosses, in 30 hybrids of six parents. The additive and non-additive gene action as well as the maternal effects was involved in the inheritance of the studied traits. For all traits, especially for fruit weight and plant yield, the additive gene action was more important than the non-additive one. The parents ‘A1’ and ‘Alba’ showed a higher concentration of favourable alleles for plant yield and fruits number, and they will allow the increase of plant yield when used as a donor of pollen and the increase of fruit number when used as a recipient of pollen. The variety ‘Marmolada’ was a good general combiner for sugar content, pulp firmness and fruit weight, especially when used as a female genitor. These parents could be used in hybridization in order to accelerate the genetic improvement of some yield and quality traits in strawberries. The cross ‘Mira’ × ‘Onda’ expressed desirable specific combining ability effects for yield traits and can be successfully use in strawberries breeding programs. In the case of ‘Alba’ × ‘Clery’ there is a high probability to select progenies with valuable yield traits associated with sweet fruits.


2000 ◽  
Vol 134 (2) ◽  
pp. 191-198 ◽  
Author(s):  
C. G. IPSILANDIS ◽  
M. KOUTSIKA-SOTIRIOU

Starting with the F2 generation of the single-cross commercial hybrid Lorena (PR3183), recombinant lines were developed combining half-sib/S1 evaluation on widely spaced plants in the direction of high yielding per se. Combining ability tests consisted of crosses between: (a) recombinant lines of common pedigree and (b) recombinant lines and freely available inbred lines. The highest-yielding crosses between recombinant lines reached 100% of the original F1 hybrid in a percentage of 14·2. Low heterosis was estimated owing to additive gene action of recombinant lines. Crosses between recombinant lines and freely available inbred lines outyielded significantly the commercial F1 hybrid in a percentage of 33·3. Heterosis was greater and the original F1 hybrid was outyielded significantly because of non-additive gene action. When the applied breeding procedure on a source population with high yield adaptability is adopted and where effects of intergenotypic competition masking the inherent genotypic value are controlled, population improvement may be substituted by combined half-sib/S1 selection for productivity of lines per se in low stress conditions during the very early stages.


1970 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
R Podder ◽  
MG Rasul ◽  
AKMA Islam ◽  
Mak Mian ◽  
JU Ahmed

A half diallel set of five parents and their 10 F1’s were studied to determine the combining ability and magnitude of heterosis for eight important characters in snakegourd at the experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University during April to July, 2004. Combining ability analysis revealed that both general and specific combining ability variances were significant for all the characters except fruit diameter and fruit yield per plant. Predominance of additive gene action was noted for all the characters except days to first female flower where non-additive gene action was predominant. Parent P1 was the best general combiner for fruit yield and some yield contributing characters. Among the crosses P2  X P3, P1  X P2 and P1  X P4 were the best specific combiner for fruit yield and some of yield contributing characters. Both positive and negative heterosis was obtained of which few hybrids showed desirable and significant values. P2  X P5 showed the highest significant mid parental heterotic value for earliness and high yield whereas, P1  X P2, P2  X P3, P2  X P5 and P3  X P4 showed the highest significant better parent heterotic effect for earliness and high yield. Key words: Snakegourd (Trichosanthes cucurminata L.); combining ability; heterosis; fruit yieldDOI: http://dx.doi.org/10.3329/bjpbg.v23i2.9318 Bangladesh J. Pl. Breed. Genet., 23(2): 1-6, 2010


2020 ◽  
Vol 158 (5) ◽  
pp. 351-370
Author(s):  
P.F. Ribeiro ◽  
B. Badu Apraku ◽  
V. Gracen ◽  
E.Y. Danquah ◽  
C. Afriyie-Debrah ◽  
...  

AbstractLow soil nitrogen (low N) threatens maize production in sub-Sahara Africa (SSA). We examined the mode of gene action conditioning grain yield of intermediate maturing inbreds and evaluated lines in hybrid combinations for high yield, stability and tolerance to low N. Thirty-two sets of inbreds were crossed to three elite testers (87036, 1368 and 9071) to generate 96 F1 hybrids. The testcrosses plus four hybrid checks were evaluated under low (30 kg/ha) and high (90 kg/ha) N environments at three locations for 2 years in Ghana. Significant general combining ability (GCA) and specific combining ability (SCA) effects were detected for grain yield and most measured traits across test environments, indicating that both additive and non-additive gene action governed the inheritance of the traits. GCA effects were greater than SCA effects, indicating that most traits were controlled predominantly by additive gene action and that inbreds with positive significant GCA effects for grain yield and other traits would contribute favourable alleles to progenies across environments. Hybrid CZL 0001 × 9071 possessed high GY, increased EPP, desirable EHT and PLHT and was the highest yielding under each of two research conditions. Significant genetic correlations were observed between GY and PLHT, EPP, EHT, CA and PA implying that improvement of these traits would lead to significant gains in grain yield under low-N conditions. Hybrids CLWN 247 × 9071, ZM523B-29-2-1-1-B*6 × 9071, TZD II 68 × 1368 and P43SCRq Fs100-1-1-8 × 9071 were high-yielding, stable and low-N tolerant and should be tested on-farm and commercialized.


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


2009 ◽  
Vol 57 (4) ◽  
pp. 417-423 ◽  
Author(s):  
S. Sharma ◽  
H. Chaudhary

The success of winter × spring wheat hybridization programmes depends upon the ability of the genotypes of these two physiologically distinct ecotypes to combine well with each other. Hence the present investigation was undertaken to study the combining ability and nature of gene action for various morpho-physiological and yield-contributing traits in crosses involving winter and spring wheat genotypes. Five elite and diverse genotypes each of winter and spring wheat ecotypes and their F 1 (spring × spring, winter × winter and winter × spring) hybrids, generated in a diallel mating design excluding reciprocals, were evaluated in a random block design with three replications. Considerable variability was observed among the spring and winter wheat genotypes for all the traits under study. Furthermore, these traits were highly influenced by the winter and spring wheat genetic backgrounds, resulting in significant differences between the spring × spring, winter × winter and winter × spring wheat hybrids for some of the traits. The winter × spring wheat hybrids were observed to be the best with respect to yieldcontributing traits. On the basis of GCA effects, the spring wheat parents HPW 42, HPW 89, HW 3024, PW 552 and UP 2418 and the winter wheat parents Saptdhara, VWFW 452, W 10 and WW 24 were found to be good combiners for the majority of traits. These spring and winter wheat parents could be effectively utilized in future hybridization programmes for wheat improvement. Superior hybrid combinations for one or more traits were identified, all of which involved at least one good general combiner for one or more traits in their parentage, and can thus be exploited in successive generations to develop potential recombinants through various breeding strategies. Genetic studies revealed the preponderance of additive gene action for days to flowering, days to maturity and harvest index, and non-additive gene action for the remaining six traits.


Author(s):  
M Sen ◽  
D K De

Combining ability analysis was carried out in an 8x8 half-diallel fashion in mungbean to understand the combining ability, nature of gene action for thirteen yield and its components in 28 hybrids and their 8 parents. These 8 genotypes were already classified into drought tolerant and drought susceptible types from a laboratory study where PEG (6000) (-3) bar was used to impose drought stress against control for studying the seedling characters. The analysis of variance due to combining ability for the thirteen yield attributing traits in F1 population and their parents revealed that variances due to GCA and SCA were highly significant for all the characters indicating that these traits were controlled by both additive and non-additive gene action. Results also showed that cross combinations producing significantly superior SCA effect generally involved one of the parents with good GCA effect and the other had been either medium or poor combiner. Transgressive breeding has been opined to be useful in such cases. After compilation of the results it was found that only two cross combinations viz. SML-286(S) x B-1(T) and PDM-54(T) x K-851(T) were superior performers with respect to 7 and 5 characters including yield. Therefore, progeny of these two crosses may be pursued for obtaining lines with higher yield and tolerance to drought.


1972 ◽  
Vol 14 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Tejinder P. Singh ◽  
K. B. Singh

A diallel study of yield and its components in F1, F2, F3 and backcross generations was used to estimate components of genetic variation and type of gene action. Graphical and components of variance analyses revealed the importance of non-additive gene action for yield, pods per plant and clusters per plant. Additive gene action was important for 100-seed weight. Partial dominance for yield and seed size and partial- to over-dominance for pods per plant, clusters per plant and pods per cluster was evident from the graphic analysis. Dominant genes seem to govern inheritance of high yield and fewer pods per plant. The study indicated the appropriateness of studying one additional generation, either F2 or backcross, to confirm the F1 results. Implication of this study on breeding methodology is discussed.


Sign in / Sign up

Export Citation Format

Share Document