scholarly journals A Beckwith-Wiedemann Syndrome Case with de novo 24 Mb Duplication of Chromosome 11p15.5-14.3

Author(s):  
Huling Jiang ◽  
Zepeng Ping ◽  
Jianguo Wang ◽  
Xiaodan Liu ◽  
Yuxia Jin ◽  
...  

Abstract BackgroundMolecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome(BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An accurate diagnosis of BWS requires a complete molecular method to analyze epigenetic changes.Case presentationWe reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de nove duplication of 24 Mb at 11p15.5-14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5(three copies) at 11p15. The duplication of paternal origin withincrease of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1.ConclusionCombined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

2021 ◽  
Author(s):  
Huling Jiang ◽  
Zepeng Ping ◽  
Jianguo Wang ◽  
Xiaodan Liu ◽  
Yuxia Jin ◽  
...  

Abstract Background: Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome(BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS.Case presentation: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS‑MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5(three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. Conclusion: Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huling Jiang ◽  
Zepeng Ping ◽  
Jianguo Wang ◽  
Xiaodan Liu ◽  
Yuxia Jin ◽  
...  

Abstract Background Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. Case presentation: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. Conclusion Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 707 ◽  
Author(s):  
Orazio Palumbo ◽  
Pietro Palumbo ◽  
Ester Di Muro ◽  
Luigia Cinque ◽  
Antonio Petracca ◽  
...  

No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients. To the best of our knowledge, this is the first time that a clinical and molecular comparison among patients with overlapping 16q24.2q24.3 microduplication has been done. This study broadens our knowledge of the phenotypic consequences of 16q24.2q24.3 microduplication, providing supporting evidence of an emerging syndrome.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mina Wang ◽  
Bin Li ◽  
Zehuan Liao ◽  
Yu Jia ◽  
Yuanbo Fu

Abstract Background The microdeletion of chromosome 13 has been rarely reported. Here, we report a 14-year old Asian female with a de novo microdeletion on 13q12.3. Case presentation The child suffered mainly from two types of epileptic seizures: partial onset seizures and myoclonic seizures, accompanied with intellectual disability, developmental delay and minor dysmorphic features. The electroencephalogram disclosed slow waves in bilateral temporal, together with generalized spike-and-slow waves, multiple-spike-and-slow waves and slow waves in bilateral occipitotemporal regions. The exome sequencing showed no pathogenic genetic variation in the patient’s DNA sample. While the single nucleotide polymorphism (SNP) array analysis revealed a de novo microdeletion spanning 2.324 Mb, within the cytogenetic band 13q12.3. Conclusions The epilepsy may be associated with the mutation of KATNAL1 gene or the deletion unmasking a recessive mutation on the other allele, and our findings could provide a phenotypic expansion.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1585-1585
Author(s):  
Elena M. Hartmann ◽  
Itziar Salaverria ◽  
Silvia Bea ◽  
Andreas Zettl ◽  
Pedro Jares ◽  
...  

Abstract Mantle Cell Lymphoma (MCL) is an aggressive B-Cell Non Hodgkin Lymphoma which is genetically characterized by the translocation t(11;14). This translocation leads to juxtaposition of the Cyclin D1 gene and the IgH locus, resulting in constitutive overexpression of Cyclin D1 and consecutive cell cycle dysregulation. Apart from this typical structural genetic alteration, several studies using conventional or array-based comparative genomic hybridization (CGH) reported a high number of secondary numerical genetic alterations contributing to MCL lymphomagenesis and influencing the clinical behavior. Increasingly, there is evidence that loss of heterozygosity (LOH) without copy number changes (e.g. caused by mitotic recombination between the chromosomal homologues, also referred to as acquired (partial) uniparental disomy (a(p)UPD), is an important alternative mechanism for tumor suppressor gene inactivation. However, this phenomenon is undetectable by CGH techniques. Single Nucleotide Polymorphism (SNP) based arrays allow - in addition to high resolution copy number (CN) analyses and SNP genotyping - in the same experiment the analysis of loss of heterozygosity (LOH) events and hereby enable the detection of copy neutral LOH. We analyzed the 3 t(11;14)-positive MCL cell lines Granta 519, HBL-2 and JVM-2 and 5 primary tumor specimens from untreated MCL patients with both the Affymetrix GeneChip®Human Mapping 100K and 500K array sets. In the 3 cell lines, we found an excellent agreement between the copy number changes obtained by SNP array analysis and previously published array CGH results. Extending published results (Nielaender et al., Leukemia 2006), we found regions of pUPD in all 3 MCL cell lines, which often affected regions reported as commonly deleted in MCL. Intriguingly, HBL-2 that is characterized by relatively few chromosomal losses, carries an increased number of large regions showing copy neutral LOH. Furthermore, we compared the results obtained by the 100K and 500K mapping array sets from 5 primary MCL tumor specimens with previously published conventional CGH data. All cases showed genetic alterations in both conventional CGH and SNP array analysis. The total number of copy number alterations detected by conventional CGH was 35, including 23 losses, 10 gains and 2 amplifications. The total number of CN alterations detected by the mapping 100K and 500K array sets was 81 (50 losses, 26 gains and 5 amplifications) and 82 (50 losses, 27 gains and 5 amplifications), respectively. We found an excellent agreement in the large CN alterations detected by conventional CGH and both SNP array platforms. Furthermore, we identified >40 mostly small CN alterations that have not been detected by conventional CGH (median size <5MB for losses and <3Mb for gains). The CN alterations detected by the 100k and the 500K array sets were highly identical. Importantly, we discovered regions of partial UPD in 4 of the 5 MCL cases (size range from around 2Mb up to a single region >40Mb). In conclusion, the results demonstrate the capability of SNP array analysis for identifying CN alterations and partial UPD at high resolution in MCL cell lines as well as in primary tumor samples.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4337-4337
Author(s):  
Giovanni Cazzaniga ◽  
Silvia Bungaro ◽  
Manoj Raghavan ◽  
Chiara Beretta ◽  
Maria G. Dell’Oro ◽  
...  

Abstract We have performed a combined Real Time Quantitative-PCR and single nucleotide polymorphisms array analyses for dissecting the clonal evolution in a childhood AML patient who experienced two relapses and for whom we had the availability of the cord blood (CB) sample. The patient was diagnosed at 6 years of age with an AML-M1 and showed normal karyotype and a FLT3-ITD mutation as a sole abnormality. She underwent autologous-BMT; however, 3.5 months later the patient relapsed, and 4 months after an allogeneic-BMT she suffered from a second relapse and died for disease progression. Highly sensitive (10−4) monitoring of FLT3-ITD was performed by patient-specific RQ-PCR, and showed a progressive decrease of minimal residual disease (MRD) during induction therapy. MRD was below the detection limit before auto-BMT, but the same FLT3-ITD clone re-emerged three months after auto-BMT, and preceded the clinical relapse. Thus, the same FLT3-ITD mutation was detected at the time of relapse, suggesting that the leukemic clone responsible for the first diagnosis was still present and could be potentially used as a marker for backtracking the leukemia into the CB. When tested by highly sensitive RQ-PCR, the DNA from CB resulted negative for the FLT3-ITD mutation. Although the relatively limited sensitivity of the technique might impair the interpretation, the FLT3-ITD negative result in CB is consistent with the hypothesis that FLT3-ITD mutations are secondary events, not sufficient by themselves to induce leukemia transformation in hematopoietic stem cells without a necessary primary event. With the aim to find additional submicroscopical genetic changes associated to the highly aggressive nature of the patient disease, we performed a genome wide SNP array analysis on the patient DNA through the clinical evolution of the disease, from birth to relapse. This new SNP array strategy is emerging as a powerful method to detect loss of heterozygosity (LOH) and/or copy number changes in a DNA sample with high resolution. The Affymetrix GeneChip® Mapping 10K platform has been used, which allows the scanning of more than 10.000 SNPs. SNP array analysis on DNA from the first relapse showed the deletion of the long arm of chromosome 9, a recurring chromosomal aberration in AML, and LOH on the whole chromosome 13 not associated with copy number changes. This latter has been confirmed by FISH, and it is consistent with uniparental isodisomy (UPD) as a responsible mechanism for the somatically acquired homozygosity of FLT3-ITD at 13q14. This mechanism is emerging as a frequent way of disease progression and represents a subsequent event to FLT3-ITD heterozygous mutation. The deletion of the wild type FLT3 allele has been confirmed by PCR. 10K SNP array analysis failed to reveal LOH or copy number changes in the diagnostic and in CB samples. These findings are compatible with a somatic post-natal origin of the FLT3-ITD positive AML subtype. Additional abnormalities can be responsible for the disease progression, via different mechanisms, including UPD. Other methods must be applied to find the primary event(s) giving rise to leukemia in association with FLT3-ITD mutation.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Juan L. García-Hernández ◽  
Luis A. Corchete ◽  
Íñigo Marcos-Alcalde ◽  
Paulino Gómez-Puertas ◽  
Carmen Fons ◽  
...  

Abstract Background Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. Methods To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). Results The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. Conclusions Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.


2020 ◽  
Author(s):  
Juan L. García-Hernández ◽  
Luis A. Corchete ◽  
Íñigo Marcos-Alcalde ◽  
Paulino Gómez-Puertas ◽  
Carmen Fons ◽  
...  

Abstract Background Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. Methods To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). Results The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium; and with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. Conclusions Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1706-1706
Author(s):  
Claudia Haferlach ◽  
Sandra Wille ◽  
Alexander Kohlmann ◽  
Susanne Schnittger ◽  
Wolfgang Kern ◽  
...  

Abstract Abstract 1706 TET2 (tet oncogene family member 2) on chromosome 4q24 was identified as a candidate tumor suppressor gene. Recurring submicroscopic deletions and copy-neutral loss of heterozygosity (CN-LOH) involving 4q in MDS patients detected by SNP microarray analyses suggested TET2 as an interesting candidate gene. Subsequent sequencing studies revealed TET2 mutations in 10–25% of patients with AML, MDS, and MPNs, while a mutation frequency of up to 42% was reported in CMML. Only a subset of studies evaluated both TET2 mutation status and TET2 copy number status, although this might be of pathophysiological and even of prognostic relevance if TET2 functions as a classical tumor suppressor gene. In the majority of studies copy number status was determined by SNP array analysis, although being expensive and time consuming. Here, in order to investigate TET2 deletions in a large cohort of patients an easy to perform FISH assay was developed applying BACs covering the TET2 gene (RP11-351K6 and RP11-16G16; BlueGnome, Cambridge, UK). This assay was validated on samples with TET2 deletions proven by SNP array analysis. With these FISH probes we analyzed 843 cases with myeloid malignancies (404 AML (323 de novo AML, 68 s-AML, 13 t-AML), 166 MDS, 201 CMML, and 72 MPN). Overall 50 (5.9%) cases with TET2 deletion were identified. These included 22 AML (5.0%), in detail 14 de novo AML (4.3%), 6 s-AML (8.8%), and 2 t-AML (15.4%) as well as 15 CMML (7.5%), 9 MDS (5.4%) and 4 MPN (5.6%). Patients with TET2 deletions showed the following karyotypes: normal: n=15, cytogenetically balanced rearrangements involving 4q24: n=3, 4q deletion as the sole abnormality: n=2, complex: n=25, other abnormalities: n=5. In 25/50 (50%) cases the TET2 deletion was cytogenetically cryptic. In patients with complex aberrant karyotype loss of 4q material was due to interstitial deletion in 7/25 cases and due to unbalanced rearrangements in 16/25 cases, while in 2/25 cases chromosomes 4 were normal in chromosome banding analysis. Furthermore, in patients with TET2 deletions mutation analyses was performed for mutations in TET2 (n=37 investigated), RUNX1 (n=13), NPM1 (n=18), JAK2V617F (n=18), CBL (n=36), NRAS (n=17), KRAS (n=36), FLT3-ITD (n=26), FLT3-TKD (n=8), IDH1 (n=9) and MLL-PTD (n=24). Mutations in TET2 were detected in 19/37 cases (51%), in RUNX1 in 1/13 (8%), in JAK2V617F in 6/18 (33.3%), in CBL in 2/36 (5.6%), in NRAS in 1/17 (6%), in KRAS in 1/36 (2.8%) and in NPM1 in 1/18 (6%) cases, whereas no mutations within the other genes analyzed were found. In the cohort of cases with TET2 deletion and concomitantly TET2 mutation (n=19) 10 had a normal karyotype (52.6%), 5 a complex karyotype (26.3%) and 4 had other abnormalities (21.1%). Importantly, in the cohort of CMML, in 10 of 14 cases (71.4%) both a TET2 deletion and TET2 mutation was detected. Overall, TET2 mutations were significantly more frequent in patients with cytogenetically cryptic TET2 deletion as compared to cytogenetically visible 4q deletions (68.2% vs. 26.7%, p=0.020). In addition FISH screening identified 2 cases (one CMML, one t-MDS) which showed a translocation involving the TET2 locus not leading to a deletion of the BAC signals but a separation suggesting a fusion with yet unidentified partner genes. In conclusion, FISH analyses identified TET2 deletions in 6% of myeloid malignancies. 50% of these deletions were submicroscopic and therefore not detectable by chromosome banding analysis. TET2 deletions were accompanied by TET2 mutations in 51% of respective cases. FISH is a reliable and efficient method to determine the copy number state of TET2. Still, the prognostic impact of TET2 deletions with and without additional TET2 mutations in the various myeloid malignancies has to be evaluated in future investigations. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Wille:MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2021 ◽  
Author(s):  
Juan L. García-Hernández ◽  
Luis A. Corchete ◽  
Íñigo Marcos-Alcalde ◽  
Paulino Gómez-Puertas ◽  
Carmen Fons ◽  
...  

Abstract Background: Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. Methods: To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). Results: The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium; and with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. Conclusions: Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.


Sign in / Sign up

Export Citation Format

Share Document