scholarly journals Dispersal and Oviposition Patterns of Lycorma Delicatula (Hemiptera: Fulgoridae) During Oviposition Period in Ailanthus Altissima (Simaroubaceae)

Author(s):  
Minhyung Jung ◽  
Jung-Wook Kho ◽  
Do-Hun Gook ◽  
Young Su Lee ◽  
Doo-Hyung Lee

Abstract The spotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), has the potential to become a global pest and is currently expanding its range in the United States. In this study, we investigated the dispersal patterns of SLF in Ailanthus altissima during its oviposition period in South Korea using fluorescent marking system. Oviposition patterns of SLF were then analyzed by surveying egg masses in A. altissima patches. The recapture rate of fluorescent-marked SLF rapidly decreased < 30% within the first two weeks. During the oviposition period, seven cases of among-patch dispersal of SLF adults were observed with a minimum estimated dispersal distance mainly ranging between 10 - 60 m and a maximum of 1,740 m. Also, the number of A. altissima trees detected with fluorescent-marked SLF increased until late September. Based on the egg mass survey, a total of 159 egg masses were detected from 38 out of 247 A. altissima trees. Furthermore, ca. 80% of egg masses were located < 2.5 m above the ground. Finally, the number of egg masses showed significant positive correlations with the height and diameter at root collar of A. altissima trees; both tree height and DRC were significantly larger from the trees with egg masses.

2019 ◽  
Vol 113 (2) ◽  
pp. 1028-1032 ◽  
Author(s):  
Houping Liu ◽  
Richard J Hartlieb

Abstract The spatial distribution of Lycorma delicatula (White) egg masses on three species of trees were studied in Pennsylvania. Five tree-of-heaven, five black walnut, and one Siberian elm trees were felled in early spring 2019 to sample for egg masses. Each egg mass was marked for its cardinal direction, position in the tree, height above ground, and spread from the bole. A total of 214 egg masses were found on tree-of-heaven and black walnut, with 38.3, 29.4, 22.0, and 10.3% on the north, west, south, and east quadrant, respectively. No significant difference in cardinal direction was found for either species. Equal number of egg masses were found on branches and boles on tree-of-heaven. However, significantly more egg masses were found on branches (96.5%) compared to boles (3.5%) on black walnut. Egg masses were laid at 0.30–12.92 and 0.70–17.00 m above ground, with most on boles/higher branches and middle/lower branches for tree-of-heaven and black walnut, respectively. Significant effect of height above ground was found for black walnut, with more egg masses found at 4–6 m compared to 0–2, 12–14, and 14–16 m. Significant effect of spread from the bole was found for tree-of-heaven, with more egg masses found at 0–2 m compared to 2–4 and 4–6 m. The 24 egg masses on the Siberian elm were mostly found on east quadrant branches 0–2 m above ground and within 2 m from the bole. Variation in tree branching patterns and difference in egg mass distribution of other forest pests were discussed.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 833
Author(s):  
Dalton C. Ludwick ◽  
Jessica Patterson ◽  
Layne B. Leake ◽  
Lee Carper ◽  
Tracy C. Leskey

Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae) is an invasive species in the United States, where it has caused significant damage to specialty crops, including apples. While integrated pest management techniques have been developed for H. halys in apple, including spray application techniques, it is unknown how these techniques affect foraging, adventive Trissolcus japonicus (Ashmead, 1904) (Hymenoptera: Scelionidae), and its offspring. In this study, egg masses (unparasitized and 2 and 7 day parasitized pre-treatment) were placed in apple orchards in treated and untreated locations that received full block insecticide applications or reduced application techniques, including border row or alternate row middle applications. Bifenthrin, thiamethoxam + λ-cyhalothrin, clothianidin, and methomyl were evaluated. Egg masses were retrieved 24 h after spray applications. For 2 and 7 day parasitized pre-treatment, adult T. japonicus emergence was recorded from each egg mass. For unparasitized egg masses, T. japonicus females were given 24 h to forage and oviposit on post-treatment egg masses with female survivorship, and adult emergence from egg masses was recorded. Female survivorship was significantly lower on post-treatment egg masses retrieved from areas receiving bifenthrin applications. Emergence from post-treatment egg masses was affected by thiamethoxam + λ-cyhalothrin, bifenthrin, and methomyl in some treated areas, whereas less impact was observed on 2 and 7 day pre-treatment parasitized egg masses in general. These data provide further insights into H. halys management and the potential impact of T. japonicus in sprayed orchard agroecosystems.


2021 ◽  
Author(s):  
Dalton C Ludwick ◽  
Layne B Leake ◽  
William R Morrison ◽  
Jesús R Lara ◽  
Mark S Hoddle ◽  
...  

Abstract Halyomorpha halys (Stål) is an invasive pest in the United States and other countries. In its native range, H. halys eggs are parasitized by a co-evolved parasitoid, Trissolcus japonicus (Ashmead). In the United States, T. japonicus, a classical biological control candidate, is being redistributed in many states where adventive populations exist. To establish if H. halys egg holding conditions affect T. japonicus foraging behavior or successful parasitism, naïve, female parasitoids from an adventive population were allowed to forage in laboratory bioassay arenas with either fresh or frozen (−20 or −80°C) egg masses, the latter held for five durations ranging from 1 h to 112 d. Parasitoid movements were recorded for 1 h. Thereafter, parasitoids were transferred with the same egg mass for 23 h. Additionally, female parasitoids from a quarantine colony were exposed to: 1) pairs of fresh egg masses and egg masses frozen at −40°C (&gt;24 h) or 2) a single fresh egg mass or egg mass frozen at −40°C (&lt;1 h). All exposed egg masses were held to assess progeny emergence. In the foraging bioassay, holding temperature and storage duration appeared to influence host-finding and host quality. Egg masses held at −80°C and fresh egg masses resulted in significantly greater levels of parasitism and progeny emergence compared with eggs held at −20°C. No differences were recorded between egg masses held at −40°C for ≤1 h and fresh egg masses. These results will help refine methods for preparation of egg masses for sentinel monitoring and parasitoid mass rearing protocols.


2020 ◽  
Vol 49 (5) ◽  
pp. 1185-1190
Author(s):  
Osariyekemwen Uyi ◽  
Joseph A Keller ◽  
Anne Johnson ◽  
David Long ◽  
Brian Walsh ◽  
...  

Abstract Despite its broad host range, the spotted lanternfly Lycorma delicatula (White), is known to have a marked preference for Ailanthus altissima. However, whether this polyphagous phloem feeder can complete its life cycle in the absence of A. altissima is unknown. We examined the performance of L. delicatula with and without access to A. altissima by tracking development, survival, host tree species association, and oviposition in large enclosures planted with Salix babylonica and Acer saccharinum along with either A. altissima or Betula nigra. We monitored enclosures from late May 2019 through June 2020. Lycorma delicatula survival was slightly higher in enclosures with A. altissima and 50% of individuals in A. altissima enclosures reached the adult stage ~6.5 d earlier than in enclosures without A. altissima. In the presence of A. altissima, nymphs were most frequently observed on this host while adults were found at similar frequencies on A. altissima and A. saccharinum. In the absence of A. altissima, nymphs were most frequently associated with S. babylonica and A. saccharinum, while adults were most often found on A. saccharinum. Females laid a total of 46 and 6 egg masses in enclosures with and without A. altissima, respectively, before freezing temperatures killed the remaining adults. The proportion of eggs that hatched per egg mass did not differ between treatments. Although L. delicatula can complete development and reproduce on other host species without access to A. altissima, fitness was reduced. These findings have implications for management that relies exclusively on treatment of A. altissima.


2020 ◽  
Vol 49 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Joseph A Francese ◽  
Miriam F Cooperband ◽  
Kelly M Murman ◽  
Stefani L Cannon ◽  
Everett G Booth ◽  
...  

Abstract The spotted lanternfly, Lycorma delicatula (White), an invasive, phloem-feeding fulgorid generalist, was recently discovered in the United States. Current trapping methods include placing glue-covered sticky bands around trunks of host trees to exploit the lanternfly’s behavior of climbing up tree trunks. These bands are messy and need to be replaced often as they become covered in both target and nontarget insects and debris. Fourth instar nymphs and adults have also shown an ability to escape from traditional tree bands or avoid capture. A promising commercially available tree band (BugBarrier) design that faces inward to the trunk and targets larger developmental stages was tested. A modified pecan weevil trap (circle trunk trap) was also compared with tree bands. This design does not require the use of insect-trapping adhesive. Circle trunk traps caught more third and fourth instar and adult L. delicatula than BugBarrier bands. Flight intercept traps caught fewer adult L. delicatula than trunk-based tree bands. In a separate comparison, more spotted lanternflies were caught on adhesive-coated ‘tree mimicking’ traps placed along the edges of Ailanthus altissima Swingle (Sapindales: Simaroubaceae) stands than away from hosts in an open field. Circle trunk traps are recommended for their effectiveness at capturing L. delicatula as well as their relative ease-of-use and reusability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osariyekemwen Uyi ◽  
Joseph A. Keller ◽  
Emelie Swackhamer ◽  
Kelli Hoover

AbstractLycorma delicatula (spotted lanternfly) has a broad host range with a strong preference for the invasive host plant from its native range, tree of heaven (Ailanthus altissima); it had long been speculated that L. delicatula could not develop or reproduce without access to tree of heaven. In 2019, we found that this assumption was incorrect, but fitness was reduced in the absence of A. altissima in that the number of egg masses laid was dramatically fewer for insects reared on suitable non-A. altissima host plants that had recently been established. We hypothesized that longer established, larger trees (of the same species) would improve the fitness of L. delicatula in the absence of tree of heaven. In spring 2020, we examined insect performance with and without access to A. altissima by tracking development, survival, host tree association and oviposition in large enclosures with trees planted two years prior to the study. Each enclosure included one each of Juglans nigra, Salix babylonica and Acer saccharinum along with either one A. altissima or one Betula nigra; these trees had twice the diameter of the same trees the previous year. We reared nymphs with and without access to A. altissima, released them into the corresponding large enclosures as third instars, and monitored them from early July 2020 through November 2020. We also determined whether lack of access to A. altissima by parents of L. delicatula have any fitness effects on offspring performance. To ensure adequate adult populations for comparing fecundity between treatments, third instars were released into the multi-tree enclosures due to high mortality in earlier instars that occurred in a similar study in 2019. Insect survival was higher and development faster with access to A. altissima. Third and fourth instar nymphs were most frequently observed on A. altissima when it was present, while adults were equally associated with A. saccharinum and A. altissima. In the absence of A. altissima, nymphs were most frequently found on S. babylonica, while adults were most often on A. saccharinum. Females with access to A. altissima deposited nearly 7-fold more egg masses than those without access to A. altissima, which is consistent with the difference in egg mass numbers between the two treatments the previous year; thus, our hypothesis was rejected. The offspring of parents that had been reared without access to A. altissima showed similar survival and development time from egg to adult as offspring from parents that never had access to A. altissima. These findings suggest that managers need to be aware that even in the absence of A. altissima in the landscape, several hardwood host trees can be utilized by L. delicatula to develop and reproduce, but fitness without A. altissima is likely to still be reduced.


2021 ◽  
Author(s):  
Melody A Keena ◽  
Anne L Nielsen

Abstract Comparisons were made of the effects of temperature and duration of low temperature on hatch of newly laid egg masses of the invasive spotted lanternfly, Lycorma delicatula (White). Egg masses were collected in mid-October 2019 and estimated to be less than 14 d old. There was a significant positive nonlinear relationship between temperature and developmental rate (1/d) for eggs held at constant temperatures. The lower threshold for egg development was estimated as 7.39°C. Eggs held at constant 10, 15, and 20°C were estimated to require 635, 715, and 849 DD7.39, respectively, to develop. Egg hatch was variable, egg hatch rates were highest (58.4%) when held at a constant 15°C, though high rates (52.7%) were also obtained when eggs were held for 84 d at 10°C, then moved to 25°C. Almost all eggs enter diapause since very few eggs were able hatch when moved to 25°C after 7 d of chill at either 5 or 10°C. Chilling at 5 or 10°C increased percentage egg hatch as the duration in chill increased up to ~100 d and eggs held at 10°C were able to complete some or all the post-diapause development before being moved to 25°C. All egg masses were held at constant 16:8 (L:D) photoperiod and 65%RH. Our data suggest that temperature is the driving factor for diapause termination in spotted lanternfly, but other abiotic factors should be investigated. These identified developmental temperature threshold and degree day requirements for egg hatch will improve predictive distribution and phenological models.


2005 ◽  
Vol 65 (1) ◽  
pp. 9-17 ◽  
Author(s):  
E. B Beserra ◽  
C. T. Dias ◽  
J. R. P. Parra

In this study we analyzed the impact of physical barriers of Spodoptera frugiperda (J. E. Smith) egg-masses on the behavior of Trichogramma atopovirilia Oatman & Platner and Trichogramma pretiosum Riley. The duration of drumming, drilling, oviposition, period spent over the egg-mass, and interval between parasitized eggs were timed, and the number of parasitized eggs were recorded. The presence of scales on the egg-masses caused a significant increase in the time spent by both parasitoids on each process and a decrease in the residence time over the egg-mass and in the number of parasitized eggs, with an increase in the number of egg layers. There was a significant decrease in the number of parasitized eggs in relation to egg-masses with one layer and no scales. We observed that the physical barriers in fall armyworm egg-masses changed the behavior of T. atopovirilia and T. pretiosum, affecting their parasitization capacity.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 82
Author(s):  
Amandeep Kaur ◽  
Louise Ferguson ◽  
Niels Maness ◽  
Becky Carroll ◽  
William Reid ◽  
...  

Pecan is native to the United States. The US is the world’s largest pecan producer with an average yearly production of 250 to 300 million pounds; 80 percent of the world’s supply. Georgia, New Mexico, Texas, Arizona, Oklahoma, California, Louisiana, and Florida are the major US pecan producing states. Pecan trees frequently suffer from spring freeze at bud break and bloom as the buds are quite sensitive to freeze damage. This leads to poor flower and nut production. This review focuses on the impact of spring freeze during bud differentiation and flower development. Spring freeze kills the primary terminal buds, the pecan tree has a second chance for growth and flowering through secondary buds. Unfortunately, secondary buds have less bloom potential than primary buds and nut yield is reduced. Spring freeze damage depends on severity of the freeze, bud growth stage, cultivar type and tree age, tree height and tree vigor. This review discusses the impact of temperature on structure and function of male and female reproductive organs. It also summarizes carbohydrate relations as another factor that may play an important role in spring growth and transition of primary and secondary buds to flowers.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Joshua M Milnes ◽  
Elizabeth H Beers

Abstract Trissolcus japonicus (Ashmead), an Asian parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), was first detected in North America in 2014. Although testing in quarantine facilities as a candidate for classical biological control is ongoing, adventive populations have appeared in multiple sites in the United States, Canada, and Europe. Extensive laboratory testing of T. japonicus against other North American pentatomids and H. halys has revealed a higher rate of parasitism of H. halys, but not complete host specificity. However, laboratory tests are necessarily artificial, in which many host finding and acceptance cues may be circumvented. We offered sentinel egg masses of three native pentatomid (Hemiptera: Pentatomidae) pest species (Chinavia hilaris (Say), Euschistus conspersus Uhler, and Chlorochroa ligata (Say)) in a field paired-host assay in an area with a well-established adventive population of T. japonicus near Vancouver, WA. Overall, 67% of the H. halys egg masses were parasitized by T. japonicus during the 2-yr study. Despite the ‘worst case’ scenario for a field test (close proximity of the paired egg masses), the rate of parasitism (% eggs producing adult wasps) on all three native species was significantly less (0.4–8%) than that on H. halys eggs (77%). The levels of successful parasitism of T. japonicus of the three species are C. hilaris > E. conspersus > C. ligata. The potential impact of T. japonicus on these pentatomids is probably minimal.


Sign in / Sign up

Export Citation Format

Share Document