scholarly journals Comprehensive Analysis on the Hydrologic Alteration and Causes of River Runoff in Min River of the Yangtze River, China

Author(s):  
Wenxian Guo ◽  
Haotong Zhou ◽  
Xuyang Jiao ◽  
Yongwei Zhu ◽  
Hongxiang Wang

Abstract The construction of water conservancy projects has changed the hydrological situation of rivers and has an essential impact on the river ecosystem. The influence modes of different factors on runoff alteration are discussed to improve the development and utilization of water resources and promote ecological benefits. The ecological, hydrological index change range method (IHA-RVA) and hydrological alteration degree method were comprehensively used to evaluate Min River's hydrological situation. Based on six budyko hypothesis formulas, the contribution rates of climate change and human activities to runoff change are quantitatively analyzed. The study showed that the runoff of Min River basin showed a significant decreasing trend from 1960 to 2019 and a sudden alteration around 1993; The overall alteration in runoff conditions was 45% moderate, and the overall alteration in precipitation was 37% moderate; Precipitation and potential evapotranspiration also showed a decreasing trend within the same period, but the overall trend was not significant; The contribution of climate alteration to runoff alteration is 30.2%, and the contribution of human activities to runoff alteration is 69.8%, human activities are the dominant factor affecting the alteration of runoff situation in Min River basin.

2019 ◽  
Vol 11 (13) ◽  
pp. 1628 ◽  
Author(s):  
Jing Zhao ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng ◽  
...  

Understanding the changing relationships between vegetation coverage and precipitation/temperature (P/T) and then exploring their potential drivers are highly necessary for ecosystem management under the backdrop of a changing environment. The Jing River Basin (JRB), a typical eco-environmentally vulnerable region of the Loess Plateau, was chosen to identify abrupt variations of the relationships between seasonal Normalized Difference Vegetation Index (NDVI) and P/T through a copula-based method. By considering the climatic/large-scale atmospheric circulation patterns and human activities, the potential causes of the non-stationarity of the relationship between NDVI and P/T were revealed. Results indicated that (1) the copula-based framework introduced in this study is more reasonable and reliable than the traditional double-mass curves method in detecting change points of vegetation and climate relationships; (2) generally, no significant change points were identified during 1982–2010 at the 95% confidence level, implying the overall stationary relationship still exists, while the relationships between spring NDVI and P/T, autumn NDVI and P have slightly changed; (3) teleconnection factors (including Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), Niño 3.4, and sunspots) have a more significant influence on the relationship between seasonal NDVI and P/T than local climatic factors (including potential evapotranspiration and soil moisture); (4) negative human activities (expansion of farmland and urban areas) and positive human activities (“Grain For Green” program) were also potential factors affecting the relationship between NDVI and P/T. This study provides a new and reliable insight into detecting the non-stationarity of the relationship between NDVI and P/T, which will be beneficial for further revealing the connection between the atmosphere and ecosystems.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2001 ◽  
Author(s):  
Lee ◽  
Yeh

In recent years, the influence of climate change and human activity on the global environment have become a concern. It is essential to better understand the hydrologic environment to evaluate water availability and related issues. In this study, we perform a trend and breakpoint analysis on streamflow time series in the Lanyang, Keelung, Dahan, Fengshan, Youluo and Shangping River Basins in northern Taiwan. Furthermore, we apply the Budyko–Fu equation and the Budyko–Mezentsev–Choudhury–Yang equation to evaluate the elasticity of streamflow with respect to climate factors and the catchment characteristics parameter. We discuss the sensitivity of streamflow to climate factors (precipitation and potential evapotranspiration), as well as sensitivity to human activities such as land use changes. We detected breakpoints in the streamflow time series for the Lanyang and Keelung rivers in in 1993 and 1990, respectively. The streamflow of Lanyang River increased by 32.50% during the variation period (1993–2017), with 109.00% of the variation caused by non-climate factors. The Keelung River’s streamflow was reduced by 18.11% during the variation period (1990–2017), and the dominant factor was climate change, accounting for 71.53% of the reduction. Sensitivity analysis showed that precipitation changes were the most sensitive factor of streamflow variation. For every 1% increase in precipitation, the streamflow would increase by 1.05% to 1.37%. These results could serve as a reference for the sustainable development of water resources and territorial policies in northern Taiwan.


2016 ◽  
Vol 48 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Dengfeng Liu ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

The main goal of this study is to introduce the Archimedean copulas, which overcome the low accuracy and subjective nature of the traditional double mass curve method, to investigate the precipitation–runoff relationship (PRR) and detect change points in the Weihe River Basin (WRB). With the construction of a joint distribution between precipitation and runoff by the Archimedean copulas, a statistical variable considering the distribution parameter was estimated to judge the change point of the PRR. The results show that: (1) annual precipitation and runoff present decreasing trends that are significant and insignificant, respectively, at the 95% significance level, while annual potential evapotranspiration (PET) increases slightly; (2) change points of the PRR occurred in 1971 and 1994; (3) the annual runoff changed more dramatically than precipitation during the periods from 1972 to 1994 and 1995 to 2010 compared with 1960–1971, which indicates that in addition to precipitation, there are some other non-precipitation factors that are responsible for the change in the PRR; and (4) the contributions to runoff from human activities declined from 1972 to 1994 (84.15%) and 1995 to 2010 (57.16%). These results suggest that human activities (e.g., irrigation, reservoirs, water-and-soil conservation) were the primary driving forces leading to changes in the PRR in the WRB.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sidong Zeng ◽  
Chesheng Zhan ◽  
Fubao Sun ◽  
Hong Du ◽  
Feiyu Wang

Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model) and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods) are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3501
Author(s):  
Hao Liu ◽  
Zheng Wang ◽  
Guangxing Ji ◽  
Yanlin Yue

Based on the Lancang River Basin (LRB) hydro–meteorological data from 1961 to 2015, this study uses the Mann–Kendall trend test and mutation test to analyze the trend of hydro–meteorological variables, as well as which year the runoff series changes, respectively. We applied the Choudhury–Yang equation to calculate the climate and catchment landscape elasticity of runoff. Then we quantified the impact of climate change and human activities on runoff change. The results show that: (1) the mean annual precipitation (P) in LRB showed an insignificant decline, the annual potential evapotranspiration (E0) showed a significant increase, and the runoff depth (R) showed a significant decrease; (2) the abrupt change of the R occurred in 2005. Both the climate and catchment landscape elasticity of runoff increased, which means that the hydrological process of LRB became more sensitive to climate changes and human activities; (3) compared with the base period (1961–2004), the reduction of P was the leading cause of runoff reduction, with a contribution of 45.64%. The contribution of E0 and human activities to runoff changes are 13.91% and 40.45%, respectively.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2729
Author(s):  
Yuyun Huang ◽  
Minghui Yu ◽  
Haoyong Tian ◽  
Yujiao Liu

The runoff process in the Dongting Lake has been influenced by climate change and human activities in recent decades. To manage the Dongting Lake efficiently and exploit water resources properly under the background of water shortage, it is desired to detect the factors of runoff change in the Dongting Lake. Hydro-meteorological data from 1961 to 2019 are analyzed to reveal the climate change and runoff alteration of the Dongting Lake comprehensively. Mutation test is used to detect the change points of runoff depth series, finding that 1984 and 2005 are change points and therefore 1961–1983, 1984–2004, and 2005–2019 are regarded as baseline period (BP), period 1 (P1), and period 2 (P2), respectively. Eight methods are used to quantitatively assess the relative contribution of human activities and climate change on runoff variation. It reveals that climate change especially precipitation change plays the dominant role (climate change makes runoff depth increase 70.14–121.51 mm, human activities make runoff depth decrease 51.98–103.35 mm) in runoff alteration in P1 while human activities play a prime role (account for 88.47–93.17%) in P2. Human activities such as reservoir construction, water consumption, and land-use (land-cover) change may be the main factors that influence the runoff in the Dongting Lake in P2. According to the sensitivity analysis, runoff in the Dongting Lake is more sensitive to climate change in P2 compared with that in P1, and no matter in P1 or P2, runoff is more sensitive to change in precipitation than the change in potential evapotranspiration. Combined with climate forecast, the results of sensitivity analysis can be used to estimate runoff change caused by climate change in the future.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2659
Author(s):  
Bao Shanshan ◽  
Yang Wei ◽  
Wang Xiaojun ◽  
Li Hongyan

In the past several decades, climate change and human activities have influenced hydrological processes, and potentially caused more frequent and extensive flood and drought risks. Therefore, identification and quantification of the driving factors of runoff variation have become a hot research area. This paper used the trend analysis method to show that runoff had a significant downward trend during the past 60 years in the Second Songhua River Basin (SSRB) of Northeast China. The upper, middle, and lower streams of five hydrological stations were selected to analyze the breakpoint of the annual runoff in the past 60 years, and the breakpoints were used to divide the entire study period into two sub-periods (1956–1974 and 1975–2015). Using the water–energy coupling balance method based on Choudhury–Yang equation, the climatic and catchment landscape elasticity coefficient of the annual runoff change was estimated, and attribution analysis of the runoff change was carried out for the Fengman Reservoir and Fuyu stations in SSRB. The change in potential evapotranspiration has a weak effect on the runoff, and change in precipitation and catchment landscape were the leading factors affecting runoff. Impacts of climate change and land cover change were accountable for the runoff decrease by 80% and 11% (Fengman), 17% and 206% (Fuyu) on average, respectively; runoff was more sensitive to climate change in Fengman, and was more sensitive to catchment landscape change in Fuyu. In Fengman, the population was small, owing to the comparatively inhospitable natural conditions, and so human activities were low. However, in Fuyu, human activities were more intensive, and so had more impact on runoff for the Lower Second Songhua River compared to the Upper Second Songhua River.


Author(s):  
A. Guo ◽  
Q. Huang ◽  
Y. Wang

Abstract. In the Beiluohe River basin (BRB) runoff has been experiencing a significant reduction induced by climate change and human activities. This paper considers the impacts of climate change and human activities on runoff reduction. An improved empirical method for climate factors and runoff was developed to study the impacts quantitatively. Meanwhile climate elasticity of runoff, based on the Budyko hypothesis, was also adopted to study the impacts. Using runoff change points, series were divided into natural period (1960–1969) and impacted periods (1970–1994, 1995–2010). Results show that the methods used to quantify the contributions obtained different but close conclusions to one another. For 1970–1994, climate was the primary factor impacting runoff, compared with that for 1960–1969, with the contribution reaching around 70.84–83.42%, which was greater than human activities (16.58–29.16%). For 1995–2010, the role of human activities strengthened with the contribution around 62.58–65.07%, greater than climate changes, around 34.93–37.42%.


2012 ◽  
Vol 9 (10) ◽  
pp. 11521-11549 ◽  
Author(s):  
L. Q. Dong ◽  
G. X. Zhang ◽  
Y. J. Xu

Abstract. The Nenjiang River Basin (NRB) is an important grain-production region with abundant wetlands in Northeast China. Climate change and anthropogenic activities have dramatically altered the spatial and temporal distribution of regional stream discharge and water resources, which poses a serious threat to wetland ecosystems and sustainable agriculture. In this study, we analyzed 55-yr (1956–2010) rainfall and runoff patterns in the river basin to quantitatively evaluate the impact of human activities on regional hydrology. The long-term hydrologic series were divided into two periods: period I (1956–1974), during which minimum land use change occurred, and period II (1975–2010), during which land use change intensified. Kendall's rank correlation test, non-parametric Pettitt test and precipitation-runoff double cumulative curve (DCC) methods were utilized to identify the trends and thresholds of the annual runoff in the upstream, midstream, and downstream basin areas. Our results showed that the runoff in the NRB has continuously declined in the past 55 yr, and that the effects of climate change and human activities on the runoff reduction varied in the upstream, midstream and downstream area over different time scales. For the entire study period, climate change has been the dominant factor, accounting for 69.6–80.3% of the reduction in the total basin runoff. However, the impact of human activities has been increasing from 19.7% during the 1950s–1970s to 30.4% in the present time. Spatially, the runoff reduction became higher from the upstream to the downstream areas, revealing an increasing threat of water availability to the large wetland ecosystem in the lower river basin. Furthermore, the sustainable development of irrigated agriculture in the NRB will be a threat to the survival of the wetlands.


Sign in / Sign up

Export Citation Format

Share Document