scholarly journals Impaired Regulation of PMCA Activity by Defective CFTR Expression Promotes Epithelial Cell Damage in Alcoholic Pancreatitis and Hepatitis

Author(s):  
Tamara Madacsy ◽  
Árpád Varga ◽  
Noémi Papp ◽  
Bálint Tél ◽  
Petra Pallagi ◽  
...  

Abstract Background and aims. Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes.Methods. Human and mouse pancreas and liver samples and ex vivo organoids were used to study ion secretion, intracellular signaling and protein expression and interaction. The effect of PMCA4 inhibition was analysed in a mouse model of alcohol-induced pancreatitis.Results. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice.Conclusion. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.

Vestnik ◽  
2021 ◽  
pp. 208-214
Author(s):  
Б.К. Кайрат ◽  
С.Т. Тулеуханов ◽  
В.П. Зинченко

Ионы Са являются основным мессенджером в регуляции физиологических функций клеток. Внутриклеточном пространстве ионы Ca могут свободно состоянии диффундироваться в различных частях цитоплазмы, в то же время значительное количество Ca в связанном виде накапливается в различных внутриклеточных депо или в составе кальций-связывающих белков. Регуляция физиологических процессов с ионами внутриклеточного Са происходит в диапазоне концентраций 10 М, тогда как концентрация Са во внеклеточном пространстве выше и составляет 10 М, для поддержании градиента концентраций в клетках имеются важные Са транспортирующие системы плазматической мембраны, эндоплазматического ретикулума и митохондрий. В нейронах функционируют внутриклеточные ферменты и белки плазматической мембраны для поддержания Са-гомеостаза и реализации механизмов внутриклеточной сигнализации для обеспечения жизнедеятельности в выживании клеток. Нарушение или гиперактивация одного или нескольких механизмов кальциевой сигнализации может привести к повреждению и гибели нейронов в случае отсутствия компенсаторных механизмов. Ca ions are a key messenger for the regulation of most of the physiological functions of cells. Inside the cell, Ca ions can freely diffuse in various parts of the cytoplasm, but a significant amount of Ca is also bound in various intracellular depots or in the form of calcium-binding proteins. The regulation of physiological processes by intracellular Ca ions occurs in the concentration range of 10 M, and the concentration of Ca in the extracellular space is higher and is 10 M, and to maintain this concentration gradient, cells have Ca-transporting systems of the plasma membrane, endoplasmic reticulum and mitochondria. In neurons, a large number of intracellular enzymes and plasma membrane proteins function to maintain Ca-homeostasis and implement intracellular signaling mechanisms to ensure vital activity in the survival of cells. Violation or hyperactivation of one or more mechanisms of calcium signaling can lead to cell damage and death in the absence of compensatory mechanisms.


2020 ◽  
Author(s):  
Tamara Madácsy ◽  
Árpad Varga ◽  
Noémi Papp ◽  
Barnabás Deák ◽  
Bálint Tél ◽  
...  

ABSTRACTExocrine pancreatic damage is a common complication of cystic fibrosis (CF), which can significantly debilitate the quality of life and life expectancy of CF patients. The cystic fibrosis transmembrane conductance regulator (CFTR) has a major role in pancreatic ductal ion secretion, however, it presumably has an influence on intracellular signaling as well. Here we describe in multiple model systems, including iPSC-derived human pancreatic organoids from CF patients, that the activity of PMCA4 is impaired by the decreased expression of CFTR in ductal cells. The regulation of PMCA4, which colocalizes and physically interacts with CFTR on the apical membrane of the ductal cells, is dependent on the calmodulin binding ability of CFTR. Moreover, CFTR seems to be involved in the process of the apical recruitment of calmodulin, which enhances its role in calcium signaling and homeostasis. Sustained intracellular Ca2+ elevation in CFTR KO cells undermined the mitochondrial function and increased apoptosis. Based on these, the prevention of sustained intracellular Ca2+ overload may improve the exocrine pancreatic function and may have a potential therapeutic aspect in CF.


2021 ◽  
Author(s):  
Yan Wang ◽  
Xin Zuo ◽  
Fuyang Jiang ◽  
Lin Hou ◽  
Qiyue Jiang ◽  
...  

Abstract The impact of PM2.5 on epithelial cells is a pivotal process leading to many lung pathological changes and pulmonary diseases. In addition to PM2.5 direct interaction with epithelia, macrophages that engulf PM2.5 may also influence the function of epithelial cells. However, among the toxic researches of PM2.5, there is a lack of evaluation of direct or indirect exposure model on human bronchial epithelial cell against PM2.5. In this present research, PM2.5-exposed human bronchial epithelial cell line (BEAS-2B) serves as the direct interaction model, while the contrast is to indirect stimulation model, which takes advantage of transwell co-culture system to carry out that PM2.5 is promptly contacted with macrophages rather than BEAS-2B. By comparing these two modes of interaction, we determined the viability of BEAS-2B and mRNA and/or protein expression profile of transcription factors Nrf2,NF-kB and according inflammatory indicators, with a view to evaluating the effects of different interaction modes of PM2.5 on epithelial cell damage in vitro. We have found that macrophage involvement may protect epithelia from PM2.5 cytotoxic effect, while strengthen the inflammation response.


2001 ◽  
Vol 170 (1) ◽  
pp. 267-275 ◽  
Author(s):  
H Kulaksiz ◽  
Y Cetin

The intestinal peptide hormone uroguanylin regulates electrolyte/fluid transport in the gastrointestinal epithelium by binding to its receptor, guanylate cyclase C (GC-C), and thus specifically coupling to activation of cystic fibrosis transmembrane conductance regulator (CFTR). Since CFTR is crucially involved in pancreatic electrolyte secretion, we investigated the human pancreas for expression and cell-specific localization of uroguanylin and guanylate cyclase C as potential regulatory components of pancreatic electrolyte secretion. RT-PCR analyses with specific primers revealed that uroguanylin and GC-C are expressed in the human pancreas (and in the duodenum, used as positive control); at the translational level, western blotting analyses with peptide- and region-specific antibodies identified the presence of 12.5 kDa uroguanylin and 130 kDa GC-C in both human pancreatic and intestinal extracts. At the cellular level, uroguanylin and GC-C immunoreactivities were absent from the islets of Langerhans but were exclusively confined to the exocrine parenchyma. Hence, uroguanylin was localized to the centroacinar cells typical of the pancreas, and also to epithelial cells of the intercalated, intralobular and interlobular ducts where the peptide was primarily concentrated adluminally to the apical portion of the respective cells. Coincidently, correlative studies localized the GC-C receptor to the epithelial cells of the ductal network, where it was confined exclusively to the apical cell membrane that evidently represents the functionally relevant target membrane domain for the regulatory peptide. In view of the fact that CFTR is highly expressed in pancreatic ductal cells where uroguanylin and its receptor are also localized, we assume that uroguanylin, an intrinsic pancreatic peptide, is involved in the regulation of electrolyte/water secretion in the ductal system via GC-C and CFTR. The particular cellular expression of uroguanylin in duct cells and the localization of GC-C to the duct cell apical membrane domain predict a novel route of intercellular signaling and luminal activation of GC-C via the pancreatic juice.


2019 ◽  
Author(s):  
Regan J. Hayward ◽  
James W. Marsh ◽  
Michael S. Humphrys ◽  
Wilhelmina M. Huston ◽  
Garry S.A. Myers

AbstractChlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and is the causative agent of trachoma (infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, with substantial resulting changes to the host cell transcriptome and proteome. However, little information is available on the impact of chlamydial infection on the host cell epigenome and global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-depleted regions, which in turn are associated with regulatory functions and transcription factor binding. We applied Formaldehyde-Assisted Isolation of Regulatory Elements enrichment followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal changes to genome-wide chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions, including several Clusters of Open Regulatory Elements (COREs) and temporally-enriched sets of transcription factors, may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signaling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work provides another perspective to the complex response to chlamydial infection, and will inform further studies of transcriptional regulation and the epigenome in Chlamydia-infected human cells and tissues


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 597 ◽  
Author(s):  
Antoine Bertin ◽  
Famara Sane ◽  
Valery Gmyr ◽  
Delphine Lobert ◽  
Arthur Dechaumes ◽  
...  

Coxsackievirus-B4 (CV-B4) E2 can persist in the pancreatic ductal-like cells (Panc-1 cell line), which results in an impaired differentiation of these cells into islet-like cell aggregates (ICA). In this study, primary pancreatic ductal cells obtained as a by-product of islet isolation from the pancreas of seven brain-dead adults were inoculated with CV-B4 E2, followed-up for 29 days, and the impact was investigated. Viral titers in culture supernatants were analyzed throughout the culture. Intracellular viral RNA was detected by RT-PCR. Levels of ductal cell marker CK19 mRNA and of insulin mRNA were evaluated by qRT-PCR. The concentration of c-peptide in supernatants was determined by ELISA. Ductal cells exposed to trypsin and serum-free medium formed ICA and resulted in an increased insulin secretion. Ductal cells from five brain-dead donors were severely damaged by CV-B4 E2, whereas the virus persisted in cultures of cells obtained from the other two. The ICAs whose formation was induced on day 14 post-inoculation were scarce and appeared tiny in infected cultures. Also, insulin mRNA expression and c-peptide levels were strongly reduced compared to the controls. In conclusion, CV-B4 E2 lysed human primary pancreatic ductal cells or persisted in these cells, which resulted in the impairment of differentiation into insulin-producing cells.


Pancreatology ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. S31
Author(s):  
Tamara Madacsy ◽  
Julia Fanczal ◽  
Petra Pallagi ◽  
Zoltan Rakonczay ◽  
Peter Hegyi ◽  
...  

1997 ◽  
Vol 272 (6) ◽  
pp. G1328-G1337 ◽  
Author(s):  
C. U. Cotton ◽  
L. al-Nakkash

We describe a method to isolate and culture epithelial cells from the main duct of the bovine pancreas. In primary cultures, secretin caused a dose-dependent increase in intracellular adenosine 3',5'-cyclic monophosphate (cAMP) and stimulated electrogenic transepithelial ion transport. Elevation of intracellular cAMP increased the rate coefficient for 36Cl- efflux from 0.14 +/- 0.03 to 0.47 +/- 0.12 min-1, and plasma membrane conductance, measured by the whole cell patchclamp technique, was increased from 0.7 +/- 0.1 to 6.9 +/- 0.8 nS. The cAMP-activated anion currents had properties similar to those mediated by the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Cells grown on permeable supports formed confluent monolayers with high transepithelial electrical resistance (1.004 +/- 96 omega. cm2) and generated a lumen negative transepithelial voltage difference (-2.5 +/- 0.6 mV). The short-circuit current (Isc) was increased by forskolin or secretin and was inhibited 87 +/- 4% by addition of ouabain (100 microM) to the basolateral bathing solution. Replacement of bathing solution Cl- by cyclamate reduced the forskolin-induced steady-state increase in Isc from 5.3 +/- 0.5 to 0.2 +/- 0.2 microA/cm2, suggesting that the stimulated current is due to anion secretion. The results of these studies demonstrate that large numbers of pancreatic ductal cells can be isolated and grown in primary cell culture. The monolayers express differentiated functions and will be useful for studies of acute and chronic regulation of ion transport in pancreatic duct epithelial cells.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo ◽  
Fawzia Batti

To learn more of the nature and origin of alcoholic hyalin (AH), 15 liver biopsy specimens from patients with alcoholic hepatitis were studied in detail.AH was found not only in hepatocytes but also in ductular cells (Figs. 1 and 2), although in the latter location only rarely. The bulk of AH consisted of a randomly oriented network of closely packed filaments measuring about 150 Å in width. Bundles of filaments smaller in diameter (40-90 Å) were observed along the periphery of the main mass (Fig. 1), often surrounding it in a rim-like fashion. Fine filaments were also found close to the nucleus in both hepatocytes and biliary epithelial cells, the latter even though characteristic AH was not present (Figs. 3 and 4). Dispersed among the larger filaments were glycogen, RNA particles and profiles of endoplasmic reticulum. Dilated cisternae of endoplasmic reticulum were often conspicuous around the periphery of the AH mass. A limiting membrane was not observed.


Sign in / Sign up

Export Citation Format

Share Document