scholarly journals Identification of Biomarkers and Pathogenesis in Severe Asthma by Co-expression Network Analysis

Author(s):  
Zeyi Zhang ◽  
Ou Chen ◽  
Jingjing Wang

Abstract BackgroundSevere asthma is a heterogeneous inflammatory disease. The rise of precise immunotherapy for severe asthmatics underlines more understanding of molecular mechanisms and biomarkers. In this study, we aim to identify underlying mechanisms and hub genes that define asthma severity.MethodsDifferentially expressed genes were screened out based on bronchial epithelial brushings from mild and severe asthmatics. Then, the weighted gene co-expression network analysis was adopted to identify gene networks and the most significant module associated with asthma severity. Meanwhile, hub genes screening and functional enrichment analysis was performed. Receiver operating characteristic was conducted to validate the hub genes.ResultsWeighted gene co-expression network analysis identified 6 modules associated with asthma severity. Three modules were positively correlated (P < 0.001) with asthma severity, containing genes upregulated in severe asthmatics. Functional enrichment analysis found genes in the highlighted module mainly enriched in neutrophil degranulation and activation, leukocyte migration and chemotaxis. Hub genes identified in the module were CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK. Combining these hub genes possessed a moderate ability for discriminating between severe asthmatics and mild-moderate asthmatics with an area under the curve of 0.75.ConclusionOur results identified biomarkers and potential pathogenesis of severe asthma, which provides sight into treatment targets and prognostic markers.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zeyi Zhang ◽  
Jingjing Wang ◽  
Ou Chen

Abstract Background Severe asthma is a heterogeneous inflammatory disease. The increase in precise immunotherapy for severe asthmatics requires a greater understanding of molecular mechanisms and biomarkers. In this study, we aimed to identify the underlying mechanisms and hub genes that determine asthma severity. Methods Differentially expressed genes (DEGs) were identified based on bronchial epithelial brushings from mild and severe asthmatics. Then, weighted gene coexpression network analysis (WGCNA) was used to identify gene networks and the module most significantly associated with asthma severity. Furthermore, hub gene screening and functional enrichment analysis were performed. Replication with another dataset was conducted to validate the hub genes. Results DEGs from 14 mild and 11 severe asthmatics were subjected to WGCNA. Six modules associated with asthma severity were identified. Three modules were positively correlated (P < 0.001) with asthma severity and contained genes that were upregulated in severe asthmatics. Functional enrichment analysis showed that genes in the most significant module were mainly enriched in neutrophil activation and degranulation, and cytokine receptor interaction. Hub genes included CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK; CXCR1, CXCR2, and TLR2 were significantly related to asthma severity in the validation dataset. The combination of ten hub genes exhibited a moderate ability to distinguish between severe and mild-moderate asthmatics. Conclusion Our results identified biomarkers and characterized potential pathogenesis of severe asthma, providing insight into treatment targets and prognostic markers.


2019 ◽  
Author(s):  
Junhong Li ◽  
Yang Zhai ◽  
Peng Wu ◽  
Yueqiang Hu ◽  
Wei Chen ◽  
...  

Abstract Background Microarray-based gene expression profiling has been widely used in biomedical research. Weighted gene co-expression network analysis (WGCNA) can link microarray data directly to clinical traits and to identify rules for predicting pathological stage and prognosis of disease, it has been found useful in many biological processes. Stroke is one of the most common diseases worldwide, yet molecular mechanisms of its pathogenesis are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes associated with the pathogenesis of stroke.Results In this study, we screened out the differentially expressed genes from gene microarray expression profiles, then constructed the free-scale gene co-expression networks to explore the associations between gene sets and clinical features, and to identify key modules and hub genes. Subsequently, functional enrichment and the receiver operating characteristic (ROC) curve analysis were performed. And the results show that a total of 11,747 most variant genes were used for co-expression network construction. Pink and yellow modules were found to be the most significantly related to stroke. Functional enrichment analysis showed that the pink module was mainly involved in regulation of neuron regeneration, and the repair of DNA damage, while the yellow module was mainly enriched in ion transport system dysfunction which were correlated with neuron death. A total of 8 hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) were identified and validated at transcriptional levels (other datasets) and by existing literatures.Conclusions Eight hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of stroke in the future.


2021 ◽  
Author(s):  
Jun Jiang ◽  
Delong Chen ◽  
Siyuan Xie ◽  
Qichao Dong ◽  
Yi Yu ◽  
...  

Abstract BackgroundHypertrophic cardiomyopathy (HCM) is a heterogeneously inherited cardiac disorder with unclear biological pathogenesis. This study aims to identify the key modules and genes involved in the development of HCM.MethodsUsing weighted gene co-expression network analysis (WGCNA) algorithm, we constructed integrative co-expression networks for the two large sample HCM datasets separately. After selecting clinically significant modules with the same clinical trait, functional enrichment analysis was performed to detect their common pathways. Based on the intramodular connectivity (IC), the shared hub genes were generated, validated, and further explored in gene set enrichment analysis (GSEA).ResultsThe orange and pink modules in GSE141910, the green and brown modules in GSE36961 were mostly related to HCM. Functional enrichment analysis suggested that HCM might exhibit enhanced processes including remodeling of extracellular matrix, activation of abnormal protein signaling, aggregation of calcium ion, and organization of cytoskeleton. SMOC2, COL16A1, RASL11B, TUBA3D, IL18R1 were defined as real hub genes due to their top IC values, significantly different expression levels, and excellent diagnostic performance in both datasets. Moreover, GSEA analysis demonstrated that pathways of the five hub genes were mainly involved in neuroactive ligand-receptor interaction, ECM-receptor interaction, Hedgehog signaling pathway.ConclusionOur study provides more comprehensive insights into the molecular mechanisms of HCM, identifies five hub genes as candidate biomarkers for HCM, which might be theoretically feasible for targeted therapy against HCM.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


2020 ◽  
Author(s):  
Yiyuan Zhang ◽  
Rongguo Yu ◽  
Jiayu Zhang ◽  
Eryou Feng ◽  
Haiyang Wang ◽  
...  

Abstract BackgroundOsteoarthritis (OA) is a common chronic disease worldwide. Subchondral bone is an important pathological change in OA and responds more rapidly to adverse loading and events compared to cartilage. However, the pathogenic genes and pathways of subchondral bone are largely unclear.ObjectiveThis study aimed to identify signature differences in genes involved in knee lateral tibial (LT) and medial tibial (MT) plateaus of subchondral bone tissue while exploring their potential molecular mechanisms via bioinformatics analysis.MethodsFirst, the gene expression data of GSE51588 was downloaded from the GEO database. Differentially expressed genes (DEGs) between knee LT and MT were identified, and functional enrichment analyses were performed. Then, a protein-protein interactive network was constructed in order to acquire the hub genes, and modules analysis was conducted using STRING and Cytoscape for further analysis. The enriched hub genes were queried in DGIdb database to find suitable drug candidates in OA.ResultsA total of 202 DEGs (112 upregulated genes and 84 downregulated genes) were determined. In the PPI network, ten hub genes were identified. Five significant modules were identified using the MCODE plugin unit. Functional enrichment analysis revealed the most important signaling pathways. Six of the ten hub genes were targetable by a total of 35 drugs, suggesting their possible therapeutic use for OA .ConclusionsThe identified hub genes and functional enrichment pathways were implicated in the development and progression of subchondral bone in OA, thus improving our understanding of OA and offering molecular targets for future therapeutic modalities.


2020 ◽  
Author(s):  
Xi Pan ◽  
Jian-Hao Liu

Abstract Background Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma that the underlying molecular mechanisms involved in the tumor initiation, progression, and migration are largely unclear. The purpose of the present study was to identify key biomarkers and small-molecule drugs for NPC screening, diagnosis, and therapy via gene expression profile analysis. Methods Raw microarray data of NPC were retrieved from the Gene Expression Omnibus (GEO) database and analyzed to screen out the potential differentially expressed genes (DEGs). The key modules associated with histology grade and tumor stage was identified by using weighted correlation network analysis (WGCNA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes in the key module were performed to identify potential mechanisms. Candidate hub genes were obtained, which based on the criteria of module membership (MM) and high connectivity. Then we used receiver operating characteristic (ROC) curve to evaluate the diagnostic value of hub genes. The Connectivity map database was further used to screen out small-molecule drugs of hub genes. Results A total of 430 DEGs were identified based on two GEO datasets. The green gene module was considered as key module for the tumor stage of NPC via WGCNA analysis. The results of functional enrichment analysis revealed that genes in the green module were enriched in regulation of cell cycle, p53 signaling pathway, cell part morphogenesis. Furthermore, four DEGs-related hub genes in the green module were considered as the final hub genes. Then ROC revealed that the final four hub genes presented with high areas under the curve, suggesting these hub genes may be diagnostic biomarkers for NPC. Meanwhile, we screened out several small-molecule drugs that have provided potentially therapeutic goals for NPC. Conclusions Our research identified four potential prognostic biomarkers and several candidate small-molecule drugs for NPC, which may contribute to the new insights for NPC therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Xu ◽  
Jian Xu ◽  
Zhiqiang Wang ◽  
Yuequan Jiang

Objective. Esophageal cancer (ESCA) is one of the most aggressive malignancies globally with an undesirable five-year survival rate. Here, this study was conducted for determining specific functional genes linked with ESCA initiation and progression. Methods. Gene expression profiling of ESCA was curated from TCGA (containing 160 ESCA and 11 nontumor specimens) and GSE38129 (30 paired ESCA and nontumor tissues) datasets. Differential expression analysis was conducted between ESCA and nontumor tissues with adjusted p value <0.05 and |log2fold-change|>1. Weighted gene coexpression network analysis (WGCNA) was conducted for determining the ESCA-specific coexpression modules and genes. Thereafter, ESCA-specific differentially expressed genes (DEGs) were intersected. Functional enrichment analysis was then presented with clusterProfiler package. Protein-protein interaction was conducted, and hub genes were determined. Association of hub genes with pathological staging was evaluated, and survival analysis was presented among ESCA patients. Results. This study determined 91 ESCA-specific DEGs following intersection of DEGs and ESCA-specific genes in TCGA and GSE38129 datasets. They were remarkably linked to cell cycle progression and carcinogenic pathways like the p53 signaling pathway, cellular senescence, and apoptosis. Ten ESCA-specific hub genes were determined, containing ASPM, BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11, KIF20 A, TOP2A, and TPX2. They were prominently associated with pathological staging. Among them, KIF11 upregulation was in relation to undesirable prognosis of ESCA patients. Conclusion. Collectively, we determined ESCA-specific coexpression modules and hub genes, which offered the foundation for future research concerning the mechanistic basis of ESCA.


2020 ◽  
Author(s):  
XU LIU ◽  
Li Yao ◽  
Jingkun Qu ◽  
Lin Liu ◽  
XU LIU ◽  
...  

Abstract Background Gastric cancer is a rather heterogeneous type of malignant tumor. Among the several classification system, Lauren classification can reflect biological and pathological differences of different gastric cancer.Method to provide systematic biological perspectives, we employ weighted gene co-expression network analysis to reveal transcriptomic characteristics of gastric cancer. GSE15459 and TCGA STAD dataset were downloaded. Co-expressional network was constructed and gene modules were identified. Result Two key modules blue and red were suggested to be associated with diffuse gastric cancer. Functional enrichment analysis of genes from the two modules was performed. Validating in TCGA STAD dataset, we propose 10 genes TNS1, PGM5, CPXM2, LIMS2, AOC3, CRYAB, ANGPTL1, BOC and TOP2A to be hub-genes for diffuse gastric cancer. Finally these ten genes were associated with gastric cancer survival. Conclusion More attention need to be paid and further experimental study is required to elucidate the role of these genes.


2022 ◽  
pp. 1-12
Author(s):  
Zhengfei Ma ◽  
Ping Zhong ◽  
Peidong Yue ◽  
Zhongwu Sun

<b><i>Background:</i></b> Intracranial aneurysm (IA) is a serious cerebrovascular disease. The identification of key regulatory genes can provide research directions for early diagnosis and treatment of IA. <b><i>Methods:</i></b> Initially, the miRNA and mRNA data were downloaded from the Gene Expression Omnibus database. Subsequently, the limma package in R was used to screen for differentially expressed genes. In order to investigate the function of the differentially expressed genes, a functional enrichment analysis was performed. Moreover, weighted gene co-expression network analysis (WGCNA) was performed to identify the hub module and hub miRNAs. The correlations between miRNAs and mRNAs were assessed by constructing miRNA-mRNA regulatory networks. In addition, in vitro validation was performed. Finally, diagnostic analysis and electronic expression verification were performed on the GSE122897 dataset. <b><i>Results:</i></b> In the present study, 955 differentially expressed mRNAs (DEmRNAs, 480 with increased and 475 with decreased expression) and 46 differentially expressed miRNAs (DEmiRNAs, 36 with increased and 10 with decreased expression) were identified. WGCNA demonstrated that the yellow module was the hub module. Moreover, 16 hub miRNAs were identified. A total of 1,124 negatively regulated miRNA-mRNA relationship pairs were identified. Functional analysis demonstrated that DEmRNAs in the targeted network were enriched in vascular smooth muscle contraction and focal adhesion pathways. In addition, the area under the curve of 16 hub miRNAs was &#x3e;0.8. It is implied that 16 hub miRNAs may be used as potential diagnostic biomarkers of IA. <b><i>Conclusion:</i></b> Hub miRNAs and key signaling pathways were identified by bioinformatics analysis. This evidence lays the foundation for understanding the underlying molecular mechanisms of IA and provided potential therapeutic targets for the treatment of this disease.


Author(s):  
Song Wang ◽  
Yi Quan

Objective: HER-2 positive breast cancer has a high risk of for relapse, metastasis and drug resistance, and is related to a poor prognosis. Thus, the study objective was to determine a target gene and explore the associated molecular mechanisms in HER-2 positive breast cancer. Methods: Three RNA expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), and were used to identify differentially expressed genes (DEGs) using R software. A Protein-Protein Interaction (PPI) network was constructed and hub genes were determined. Subsequently, the relationship between clinical parameters and hub genes was examined to screen target gene. Next, DNA methylation and genomic alterations of the target gene were evaluated. To further explore potential molecular mechanisms, genes co-expressed with the target gene were performed functional enrichment analysis Results: The differential expression analysis revealed 217 DEGs in HER-2 positive breast cancer tissues compared to normal breast tissues. RRM2 was the only hub gene closely associated with lymphatic metastasis and prognosis in HER-2 positive breast cancer. Additionally, RRM2 was frequently often amplified and negatively associated with the methylation level. Functional enrichment analysis showed that the co-expression genes were mainly involved in cell cycle. Conclusions: The present study identified RRM2 as a target gene associated with the initiation, progression and prognosis of HER-2 positive breast cancer, which may contribute to provide a new biomarker and therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document