scholarly journals Screening a prognosis-related target gene in patients with HER-2 positive breast cancer by bioinformatics analysis

Author(s):  
Song Wang ◽  
Yi Quan

Objective: HER-2 positive breast cancer has a high risk of for relapse, metastasis and drug resistance, and is related to a poor prognosis. Thus, the study objective was to determine a target gene and explore the associated molecular mechanisms in HER-2 positive breast cancer. Methods: Three RNA expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), and were used to identify differentially expressed genes (DEGs) using R software. A Protein-Protein Interaction (PPI) network was constructed and hub genes were determined. Subsequently, the relationship between clinical parameters and hub genes was examined to screen target gene. Next, DNA methylation and genomic alterations of the target gene were evaluated. To further explore potential molecular mechanisms, genes co-expressed with the target gene were performed functional enrichment analysis Results: The differential expression analysis revealed 217 DEGs in HER-2 positive breast cancer tissues compared to normal breast tissues. RRM2 was the only hub gene closely associated with lymphatic metastasis and prognosis in HER-2 positive breast cancer. Additionally, RRM2 was frequently often amplified and negatively associated with the methylation level. Functional enrichment analysis showed that the co-expression genes were mainly involved in cell cycle. Conclusions: The present study identified RRM2 as a target gene associated with the initiation, progression and prognosis of HER-2 positive breast cancer, which may contribute to provide a new biomarker and therapeutic target.

2020 ◽  
Author(s):  
Song Wang ◽  
Yi Quan ◽  
Hongying Lyu ◽  
Jian Deng

Abstract Background: HER-2 positive breast cancer has a high risk of for relapse, metastasis and drug resistance, and is correlated with a poor prognosis. Thus, the study objective was to reveal target genes and key pathways in HER-2 subtype breast cancer. Methods: The gene expression dataset (GSE29431) was downloaded from the Gene Expression Omnibus database(GEO), and the differentially expressed genes (DEGs) were determined using LIMMA package in R software. Subsequently, Functional enrichment analysis were performed in ClusterProfiler package of R platform. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction (PPI) network of DEGs. Module analysis and target genes were identified by Cytoscape software. Further more, The influence of target genes on overall survival (OS) was assessed using the Kaplan-Meier plotter database.Results: The differential expression analysis revealed 96 genes were up-regulated while 407 genes were down-regulated in HER-2 positive breast cancer tissue compared to normal breast tissue. Functional enrichment analysis showed that the DEGs were mainly involved in regulation of lipid metabolic process, PPAR signaling pathway and PI3K-Akt signaling pathway. PPI network construction revealed a total of 199 nodes and 560 edges, and 12 target genes were identified by the highest value of degree. In addition, target genes were associated with worse overall prognosis, including NUSAP1, PTTG1, CEP55, TOP2A, CCNB1, CENPF, MELK, AURKA, UBE2C, BUB1B, KIF20A and RRM2.Conclusion: The present study identified 12 target genes associated with the development of HER-2 subtype breast cancer, which may help to provide new biomarkers and therapeutic targets.


2020 ◽  
Author(s):  
Yiyuan Zhang ◽  
Rongguo Yu ◽  
Jiayu Zhang ◽  
Eryou Feng ◽  
Haiyang Wang ◽  
...  

Abstract BackgroundOsteoarthritis (OA) is a common chronic disease worldwide. Subchondral bone is an important pathological change in OA and responds more rapidly to adverse loading and events compared to cartilage. However, the pathogenic genes and pathways of subchondral bone are largely unclear.ObjectiveThis study aimed to identify signature differences in genes involved in knee lateral tibial (LT) and medial tibial (MT) plateaus of subchondral bone tissue while exploring their potential molecular mechanisms via bioinformatics analysis.MethodsFirst, the gene expression data of GSE51588 was downloaded from the GEO database. Differentially expressed genes (DEGs) between knee LT and MT were identified, and functional enrichment analyses were performed. Then, a protein-protein interactive network was constructed in order to acquire the hub genes, and modules analysis was conducted using STRING and Cytoscape for further analysis. The enriched hub genes were queried in DGIdb database to find suitable drug candidates in OA.ResultsA total of 202 DEGs (112 upregulated genes and 84 downregulated genes) were determined. In the PPI network, ten hub genes were identified. Five significant modules were identified using the MCODE plugin unit. Functional enrichment analysis revealed the most important signaling pathways. Six of the ten hub genes were targetable by a total of 35 drugs, suggesting their possible therapeutic use for OA .ConclusionsThe identified hub genes and functional enrichment pathways were implicated in the development and progression of subchondral bone in OA, thus improving our understanding of OA and offering molecular targets for future therapeutic modalities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huan Deng ◽  
Qingqing Hang ◽  
Dijian Shen ◽  
Yibi Zhang ◽  
Ming Chen

Abstract Purpose Exploring the molecular mechanisms of lung adenocarcinoma (LUAD) is beneficial for developing new therapeutic strategies and predicting prognosis. This study was performed to select core genes related to LUAD and to analyze their prognostic value. Methods Microarray datasets from the GEO (GSE75037) and TCGA-LUAD datasets were analyzed to identify differentially coexpressed genes in LUAD using weighted gene coexpression network analysis (WGCNA) and differential gene expression analysis. Functional enrichment analysis was conducted, and a protein–protein interaction (PPI) network was established. Subsequently, hub genes were identified using the CytoHubba plug-in. Overall survival (OS) analyses of hub genes were performed. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (THPA) databases were used to validate our findings. Gene set enrichment analysis (GSEA) of survival-related hub genes were conducted. Immunohistochemistry (IHC) was carried out to validate our findings. Results We identified 486 differentially coexpressed genes. Functional enrichment analysis suggested these genes were primarily enriched in the regulation of epithelial cell proliferation, collagen-containing extracellular matrix, transforming growth factor beta binding, and signaling pathways regulating the pluripotency of stem cells. Ten hub genes were detected using the maximal clique centrality (MCC) algorithm, and four genes were closely associated with OS. The CPTAC and THPA databases revealed that CHRDL1 and SPARCL1 were downregulated at the mRNA and protein expression levels in LUAD, whereas SPP1 was upregulated. GSEA demonstrated that DNA-dependent DNA replication and catalytic activity acting on RNA were correlated with CHRDL1 and SPARCL1 expression, respectively. The IHC results suggested that CHRDL1 and SPARCL1 were significantly downregulated in LUAD. Conclusions Our study revealed that survival-related hub genes closely correlated with the initiation and progression of LUAD. Furthermore, CHRDL1 and SPARCL1 are potential therapeutic and prognostic indicators of LUAD.


2020 ◽  
Author(s):  
Rongqin Ke ◽  
Jinbao Yin

Abstract Background: Further elucidation of the molecular mechanisms of the occurrence, development and prognosis of breast cancer remains an urgent need. Identifying hub genes involved in these pathogenesis and progression can potentially help to unveil these mechanisms and provide novel therapeutic targets for breast cancer. Methods: In this study, we systematically integrated robust rank aggregation (RRA), functional enrichment analysis, protein-protein interaction (PPI) networks construction and analysis, weighted gene co-expression network analysis (WGCNA), DNA methylation analyses and genomic mutation analyses, GSEA and GSVA to identify potential hub genes that are highly associated with breast cancer. Results: We identified a total of 512 robust DEGs that were significantly associated with breast cancer based on RRA analysis and functional enrichment analysis. CENPL, ISG20L2, MRPL3 and LSM4 were identified as four potential hub genes for breast cancer through the WGCNA analysis and literate search. These four hub genes were upregulated in breast cancer tissues and associated with tumor progression. ROC and Kaplan-Meier indicated these four hub genes all showed good diagnostic performance and prognostic values for breast cancer. Methylation analyses and genomic mutation analyses suggested that the abnormal up-regulation of these genes are likelyresulted from hypomethylation and gene mutations. Moreover, GSEA and GSVA for single potential hub genes revealed they were all tightly related to the proliferation of tumor cells. Conclusion: We identify four genes (CENPL, ISG20L2, MRPL3, and LSM4) that are likely playing key roles in the molecular mechanism of occurrence and development of breast cancer. They may become potential therapeutic targets for breast cancer patients with further studies. Keywords: breast cancer, RRA, WGCNA, hub genes


2019 ◽  
Author(s):  
Junhong Li ◽  
Yang Zhai ◽  
Peng Wu ◽  
Yueqiang Hu ◽  
Wei Chen ◽  
...  

Abstract Background Microarray-based gene expression profiling has been widely used in biomedical research. Weighted gene co-expression network analysis (WGCNA) can link microarray data directly to clinical traits and to identify rules for predicting pathological stage and prognosis of disease, it has been found useful in many biological processes. Stroke is one of the most common diseases worldwide, yet molecular mechanisms of its pathogenesis are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes associated with the pathogenesis of stroke.Results In this study, we screened out the differentially expressed genes from gene microarray expression profiles, then constructed the free-scale gene co-expression networks to explore the associations between gene sets and clinical features, and to identify key modules and hub genes. Subsequently, functional enrichment and the receiver operating characteristic (ROC) curve analysis were performed. And the results show that a total of 11,747 most variant genes were used for co-expression network construction. Pink and yellow modules were found to be the most significantly related to stroke. Functional enrichment analysis showed that the pink module was mainly involved in regulation of neuron regeneration, and the repair of DNA damage, while the yellow module was mainly enriched in ion transport system dysfunction which were correlated with neuron death. A total of 8 hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) were identified and validated at transcriptional levels (other datasets) and by existing literatures.Conclusions Eight hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of stroke in the future.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7313 ◽  
Author(s):  
Tingting Guo ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung adenocarcinoma (LUAD) is the major subtype of lung cancer and the most lethal malignant disease worldwide. However, the molecular mechanisms underlying LUAD are not fully understood. Methods Four datasets (GSE118370, GSE85841, GSE43458 and GSE32863) were obtained from the gene expression omnibus (GEO). Identification of differentially expressed genes (DEGs) and functional enrichment analysis were performed using the limma and clusterProfiler packages, respectively. A protein–protein interaction (PPI) network was constructed via Search Tool for the Retrieval of Interacting Genes (STRING) database, and the module analysis was performed by Cytoscape. Then, overall survival analysis was performed using the Kaplan–Meier curve, and prognostic candidate biomarkers were further analyzed using the Oncomine database. Results Totally, 349 DEGs were identified, including 275 downregulated and 74 upregulated genes which were significantly enriched in the biological process of extracellular structure organization, leukocyte migration and response to peptide. The mainly enriched pathways were complement and coagulation cascades, malaria and prion diseases. By extracting key modules from the PPI network, 11 hub genes were screened out. Survival analysis showed that except VSIG4, other hub genes may be involved in the development of LUAD, in which MYH10, METTL7A, FCER1G and TMOD1 have not been reported previously to correlated with LUAD. Briefly, novel hub genes identified in this study will help to deepen our understanding of the molecular mechanisms of LUAD carcinogenesis and progression, and to discover candidate targets for early detection and treatment of LUAD.


2020 ◽  
Author(s):  
Chao Yuan ◽  
Hongjun Yuan ◽  
Li Chen ◽  
Miaomiao Sheng ◽  
Wenru Tang

Abstract Background:Triple-negative breast cancer (TNBC) is an essential type of breast cancer (BC). Compared with other molecular subtypes of BC, TNBC has the features of fast tumor increase, quick recurrence and natural metastasis. It is more urgent to establish a comprehensive evaluation system containing multiple biomarkers than single parameter.Methods:We conduct a bioinformatics analysis on 13 BC expression datasets from the Gene Expression Omnibus (GEO), which covered 2950 samples. We took 3484 genes with a more significant difference between TNBC and normal-like candidate genes for weighted correlation network analysis (WGCNA). A total of 54 genes were chosen as hub genes with great connectivity with the TNBC significant module. Based on The Cancer Genome Atlas (TCGA) data, we identify the best prognostic three lncRNA. Multivariate Cox regression was used to construct a 3-lncRNA risk score model. We evaluated prognostic capacity using time-dependent subject operating characteristics (ROC) and Kaplan-Meier (KM) survival analysis. The predictive power of the model was demonstrated by the time-dependent ROC spline and Kaplan-Meier spline. At the same time, it also shows good predictive ability in the validation set. Ultimately, Functional enrichment analysis of hub genes and three lncRNAs were offered to advise the possible biological pathways. Results:The construct LNC00337, DEPCE-AS1, DDX11-AS1 multi-factor risk scoring model was meaningfully associated with the prognosis of TNBC patients. Through survival analysis, the risk score efficiently divided the patients into high-risk groups with poor overall survival. The time-dependent ROC curve revealed that the model presented robust in predicting survival over the first 3 years. The validity of the model in the validation set is also verified. Finally, functional enrichment analysis proposed some biological pathways that may be correlated to the tumor. Conclusions:In our study, we established a lncRNA-based model to prognosticate the prediction of TNBC, which might afford a strong prognosis estimate tool to help therapy policy-making in the clinic.


2021 ◽  
Author(s):  
Jun Jiang ◽  
Delong Chen ◽  
Siyuan Xie ◽  
Qichao Dong ◽  
Yi Yu ◽  
...  

Abstract BackgroundHypertrophic cardiomyopathy (HCM) is a heterogeneously inherited cardiac disorder with unclear biological pathogenesis. This study aims to identify the key modules and genes involved in the development of HCM.MethodsUsing weighted gene co-expression network analysis (WGCNA) algorithm, we constructed integrative co-expression networks for the two large sample HCM datasets separately. After selecting clinically significant modules with the same clinical trait, functional enrichment analysis was performed to detect their common pathways. Based on the intramodular connectivity (IC), the shared hub genes were generated, validated, and further explored in gene set enrichment analysis (GSEA).ResultsThe orange and pink modules in GSE141910, the green and brown modules in GSE36961 were mostly related to HCM. Functional enrichment analysis suggested that HCM might exhibit enhanced processes including remodeling of extracellular matrix, activation of abnormal protein signaling, aggregation of calcium ion, and organization of cytoskeleton. SMOC2, COL16A1, RASL11B, TUBA3D, IL18R1 were defined as real hub genes due to their top IC values, significantly different expression levels, and excellent diagnostic performance in both datasets. Moreover, GSEA analysis demonstrated that pathways of the five hub genes were mainly involved in neuroactive ligand-receptor interaction, ECM-receptor interaction, Hedgehog signaling pathway.ConclusionOur study provides more comprehensive insights into the molecular mechanisms of HCM, identifies five hub genes as candidate biomarkers for HCM, which might be theoretically feasible for targeted therapy against HCM.


Diagnostics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 66 ◽  
Author(s):  
Chuan Zhang ◽  
Mandy Berndt-Paetz ◽  
Jochen Neuhaus

Bladder cancer (BCa) is one of the most common malignancies and has a relatively poor outcome worldwide. However, the molecular mechanisms and processes of BCa development and progression remain poorly understood. Therefore, the present study aimed to identify candidate genes in the carcinogenesis and progression of BCa. Five GEO datasets and TCGA-BLCA datasets were analyzed by statistical software R, FUNRICH, Cytoscape, and online instruments to identify differentially expressed genes (DEGs), to construct protein‒protein interaction networks (PPIs) and perform functional enrichment analysis and survival analyses. In total, we found 418 DEGs. We found 14 hub genes, and gene ontology (GO) analysis revealed DEG enrichment in networks and pathways related to cell cycle and proliferation, but also in cell movement, receptor signaling, and viral carcinogenesis. Compared with noncancerous tissues, TPM1, CRYAB, and CASQ2 were significantly downregulated in BCa, and the other hub genes were significant upregulated. Furthermore, MAD2L1 and CASQ2 potentially play a pivotal role in lymph nodal metastasis. CRYAB and CASQ2 were both significantly correlated with overall survival (OS) and disease-free survival (DFS). The present study highlights an up to now unrecognized possible role of CASQ2 in cancer (BCa). Furthermore, CRYAB has never been described in BCa, but our study suggests that it may also be a candidate biomarker in BCa.


2020 ◽  
Author(s):  
Zeyi Zhang ◽  
Ou Chen ◽  
Jingjing Wang

Abstract BackgroundSevere asthma is a heterogeneous inflammatory disease. The rise of precise immunotherapy for severe asthmatics underlines more understanding of molecular mechanisms and biomarkers. In this study, we aim to identify underlying mechanisms and hub genes that define asthma severity.MethodsDifferentially expressed genes were screened out based on bronchial epithelial brushings from mild and severe asthmatics. Then, the weighted gene co-expression network analysis was adopted to identify gene networks and the most significant module associated with asthma severity. Meanwhile, hub genes screening and functional enrichment analysis was performed. Receiver operating characteristic was conducted to validate the hub genes.ResultsWeighted gene co-expression network analysis identified 6 modules associated with asthma severity. Three modules were positively correlated (P < 0.001) with asthma severity, containing genes upregulated in severe asthmatics. Functional enrichment analysis found genes in the highlighted module mainly enriched in neutrophil degranulation and activation, leukocyte migration and chemotaxis. Hub genes identified in the module were CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK. Combining these hub genes possessed a moderate ability for discriminating between severe asthmatics and mild-moderate asthmatics with an area under the curve of 0.75.ConclusionOur results identified biomarkers and potential pathogenesis of severe asthma, which provides sight into treatment targets and prognostic markers.


Sign in / Sign up

Export Citation Format

Share Document