scholarly journals Comparison of rhizosphere soil microbial diversity of different introduced alfalfa varieties

Author(s):  
Chunhui Ma ◽  
Jiangjiao Qi ◽  
Xue Yu ◽  
Lihe Su ◽  
Tingting He ◽  
...  

Abstract Alfalfa (Medicago sativa L.) is an important forage legume in farming and animal husbandry systems. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and alfalfa growth characteristics and soil physical and chemical properties induced by different cultivars alfalfa (Victoria, Kangsai, Aohan) in the grey desert soil. The results showed that the diversity of bacterial and fungal in Victoria was higher, and the bacterial diversity was significantly lower for alfalfa with Aohan than for the others, and the fungal diversity was lower for alfalfa with Kangsai than for the others. Heatmap showed that total nitrogen, fresh weight, pH and organic have significantly affect fungal community structure, whereas pH and organic carbon also significant effects on bacterial community structure. LefSe analysis showed that the growth adaptability of introduced alfalfa is mainly related to fungal and bacterial species, and the beneficial microorganisms with significant differences and relative high abundance are significantly enriched in Victoria. Pathogens with high relative abundance are mainly concentrated in Aohan alfalfa soil. Based on our findings, Victoria is the high-yield alfalfa suitable for planting in gray desert soil, while planting Kangsai and Aohan alfalfa needs probiotic for adjuvant.

2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approach. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. Total 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, Unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, Unclassified Ascomycota, Unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices (EMC) were significantly distinct from the soil microhabitat (Soil). Meanwhile, seven culture media that benefit for the growth of O. sinensis were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains isolated for rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora, Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera of total isolates. Conclusions The significantly distinction and overlap in fungal community structure between two approaches highlight that integration of approaches would generate more information than either of them. Our finding is the first investigation of fungal community structure of natural O. sinensis by two approachs, provide new insight into O. sinensis associated fungi, and support that microbiota of O. sinensis is an untapped source for novel bioactive metabolites discovery.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background: The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results: A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices, Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota, unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from the soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16°C, resulted in 77 fungal strains isolated by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions: The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background: The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results: A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat (Soil), Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota, unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from the soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16°C, resulted in 77 fungal strains isolated by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions: The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shengnan Wang ◽  
Jiangke Cheng ◽  
Tong Li ◽  
Yuncheng Liao

AbstractFungal communities are considered to be critically important for crop health and soil fertility. However, our knowledge of the response of fungal community structure to the continuous cropping of flue-cured tobacco is limited, and the interaction of soil fungal communities under different cropping systems remains unclear. In this study, we comparatively investigated the fungal abundance, diversity, and community composition in the soils in which continuous cropping of flue-cured tobacco for 3 years (3ys), 5 years (5ys), and cropping for 1 year (CK) using quantitative polymerase chain reaction and high-throughput sequencing technology. The results revealed that continuous cropping of flue-cured tobacco changed the abundance of soil fungi, and caused a significant variation in fungal diversity. In particular, continuous cropping increased the relative abundance of Mortierellales, which can dissolve mineral phosphorus in soil. Unfortunately, continuous cropping also increased the risk of potential pathogens. Moreover, long-term continuous cropping had more complex and stabilize network. This study also indicated that available potassium and available phosphorous were the primary soil factors shifting the fungal community structure. These results suggested that several soil variables may affect fungal community structure. The continuous cropping of flue-cured tobacco significantly increased the abundance and diversity of soil fungal communities.


Limnology ◽  
2017 ◽  
Vol 19 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Peixue Song ◽  
Shoko Tanabe ◽  
Rong Yi ◽  
Maiko Kagami ◽  
Xin Liu ◽  
...  

2021 ◽  
Vol 50 (2) ◽  
pp. 327-334
Author(s):  
Fan Yang ◽  
Liqiang Mu ◽  
Qingyang Huang ◽  
Lihong Xie ◽  
Hongjie Cao ◽  
...  

The relationship between the fungal community characteristics and soil environmental factors of volcanic ecosystem in Wudalianchi, China were investigated. The soil fungal community structure and diversity of new, old, and non-erupting volcanos were explored through highthroughput sequencing technology. The result showed that the physical and chemical properties of three plots were significantly different. Through sequencing 578 species, 366 genera, 202 families, 89 orders, 32 classes, and 11 phyla were detected. Among them Ascomycota and Basidiomycota were the dominant fungi phyla. The relative abundance of various flora determined by phylum classification showed significant differences. The Shannon, Simpson, Ace, and Chao1 indices for the soil fungi in the three plots were also significantly different. Redundancy and correlation analyses showed that the α diversity of fungi was significantly correlated with pH, organic matter and total nitrogen in the soil. These results indicate that soil environmental factors influence the fungal diversity in the different volcanic ecosystems in Wudalianchi, China. Bangladesh J. Bot. 50(2): 327-334, 2021 (June)


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chuan-Bo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices, Ophiocordyceps, Sebacinia and Archaeorhizomyces were predominant genera with the abundance of 95.86, 1.14, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota and unclassified fungi were predominant genera with an average abundance of 53.32, 8.69, 8.12, 8.12, 7.21, 4.6, 3.08 and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains identified by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.


2019 ◽  
Vol 7 (9) ◽  
pp. 322 ◽  
Author(s):  
Ren ◽  
Dong ◽  
Yan

Pinggu peach (Prunus persica (L.)) has great economic and ecological value in north China. As a plant, the peach is naturally colonized by a variety of endophytic fungi, which are very important for tree growth and health. However, the mycobiota composition and their affecting factors of the peach trees are still unknown. In our study, the fungal communities in flowers, leaves, stems, and roots of the three cultivars (Dajiubao, Qingfeng, and Jingyan) of Pinggu peach trees and in the rhizosphere soils were investigated by both Illumina Miseq sequencing of ITS rDNA and traditional culturing methods. For organs, except for roots, flowers had the highest fungal richness and diversity, while the leaves had the lowest richness and diversity. Ascomycota and Basidiomycota were the most abundant phyla among samples. The fungal assemblage composition of each organ was distinctive. Fungal communities of the three cultivars also differed from each other. The fungal community structure significantly correlated with soil pH, soil K, fruit soluble solid content, and fruit titratable acidity with the redundancy analysis (RDA). Most isolated fungal strains can be found within high-throughput sequencing identified taxa. This study indicates that plant organs, the cultivars, the soil, and fruit properties may have profound effects on the endophytic fungal community structure associated with Pinggu peach trees. With this study, microbiota-mediated pathogen protection and fruit quality promotion associated with peach trees could be further studied.


Sign in / Sign up

Export Citation Format

Share Document