scholarly journals Dynamic super-enhancer core regulatory circuits and epigenetic landscapes drive malignant progression and refractory disease in multiple myeloma

Author(s):  
Ariosto Siqueira Silva ◽  
Rafael Canevarolo ◽  
Mark Meads ◽  
Maria Silva ◽  
Praneeth Sudalagunta ◽  
...  

Abstract The plasma cell malignancy multiple myeloma (MM) evolves from a pre-malignant state and remains all but incurable due to emergence of therapy resistance. Despite intensive analyses, mechanisms driving MM progression and refractory disease are poorly understood. Integrating topologic, expression and epigenetic analyses of 1,016 patient specimens, we report super-enhancer core regulatory circuits (SECRCs) that drive and sustain MM epigenetic states. Reprogramming of cell identity and tumor microenvironment genes drive malignant conversion, while alterations in cell cycle and metabolic control genes cause refractory disease. Thus, select epigenetic states drive progression and therapy resistance, providing strategies to prevent and effectively treat MM.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2658-2658
Author(s):  
Aarif Ahsan ◽  
Ann Polonskaia ◽  
Chih-Chao Hsu ◽  
Chad C Bjorklund ◽  
Maria Ortiz Estevez ◽  
...  

Abstract Introduction: The Myeloma Genome Project (MGP) characterized the genomic landscape of patients with newly diagnosed multiple myeloma (NDMM) (Walker BA, et al. Blood 2018; 132[6]:587-597). Using a multi-omics unsupervised clustering approach, 12 molecularly-defined disease segments were identified (Ortiz M, et al. Blood 2018; 132[suppl 1]:3165). Here, we performed experimental validation of CDC28 Protein Kinase Regulatory Subunit 1B (CSK1B) that was identified as a putative target from the disease segment with poorest clinical outcome. CKS1B was selected for in-depth validation due to their role in cell cycle pathways associated with high-risk disease, biological mechanisms of chromosome 1q amplification and druggability. Methods: Association of CKS1B with outcomes was analyzed in NDMM patients, across relapses and with clinical outcome datasets from MGP and Mayo clinic. Inducible shRNAs of CKS1B and bromodomain containing protein 4 (BRD4, a member of the BET [bromodomain and extra terminal domain] family) were generated in MM cell lines. BRD4 and Aiolos ChIP-seq datasets were analyzed for binding on CKS1B gene. BRD4 inhibitors JQ1 and CC-90010 were utilized for inhibition studies in MM cell lines. Results: Higher expression of CKS1B was associated with significantly poorer PFS, OS, disease severity and relapse. Knock-down of CKS1B in MM cells led to a significant decrease in proliferation (P<0.001) and enhanced apoptosis in MM cell lines. BRD4-ChIP sequencing studies revealed that the expression of CKS1B was regulated by super-enhancer (SE) associated elements. As expected, two BRD4 inhibitors, JQ1 and CC-90010 and inducible BRD4 shRNAs downregulated the expression of CKS1B resulting in decreased proliferation, cell cycle arrest and apoptosis in MM cell lines. Furthermore, MM cell lines harboring chromosome 1q gain/amp showed higher sensitivity to BRD4 inhibition compared to cell lines with normal 1q copy number. Mechanistic studies revealed that BRD4inh and BRD4 shRNAs downregulated the expression of Aiolos and Ikaros in MM cell lines. Interestingly, Aiolos ChIP-sequencing studies demonstrated the binding of Aiolos at the transcriptional start sites of CKS1B with the transcriptional activation mark. The immunomodulatory agent (IMiD ®) pomalidomide (Pom) transcriptionally downregulated CKS1B in Pom-sensitive cells downstream of Aiolos, Ikaros degradation. Based on these mechanisms, IMiD agents, lenalidomide, Pom and the novel Cereblon E3 ligase modulating degrader (CELMoD ®) agent CC-92480 in combination with BRD4inh promoted a synergistic decrease in proliferation, cell cycle arrest and increase in apoptosis in both Pom-sensitive and -resistant cell lines. The combination of IMiD or novel CELMoD agent with BRD4inh also promoted deeper downregulation of CKS1B, Aiolos, Ikaros, c-Myc and survivin proteins with enhanced levels of apoptotic marker cleaved Caspase 3 as compared to single agents alone. Conclusions: In summary, we have identified CKS1B as a key target associated with poor outcome in MM patients. Translational studies suggest a profound downregulation of CKS1B and key pro-survival effector proteins following combination treatment with BRD4inh and IMiD agents/novel CELMoD agents resulting in synergistic anti-tumor effects. These data provide rationale for testing these agents in the clinic for high-risk and IMiD-relapsed patients. Figure: Changes in cell proliferation and protein levels of key signaling mediators were studied in K12PE cell line treated with increasing doses of Lenalidomide, Pomalidomide and CC-92480 in combination with JQ1. Figure 1 Figure 1. Disclosures Ahsan: BMS: Current Employment, Current equity holder in publicly-traded company. Polonskaia: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Hsu: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Bjorklund: BMS: Current Employment, Current equity holder in publicly-traded company. Ortiz Estevez: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Towfic: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Bahlis: Takeda: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Genentech: Consultancy; Pfizer: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria. Pourdehnad: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: No royalty. Flynt: BMS: Current Employment, Current equity holder in publicly-traded company. Ahsan: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 335
Author(s):  
Barbara Muz ◽  
Anas Abdelghafer ◽  
Matea Markovic ◽  
Jessica Yavner ◽  
Anupama Melam ◽  
...  

E-selectin is a vascular adhesion molecule expressed mainly on endothelium, and its primary role is to facilitate leukocyte cell trafficking by recognizing ligand surface proteins. E-selectin gained a new role since it was demonstrated to be involved in cancer cell trafficking, stem-like properties and therapy resistance. Therefore, being expressed in the tumor microenvironment, E-selectin can potentially be used to eradicate cancer. Uproleselan (also known as GMI-1271), a specific E-selectin antagonist, has been tested on leukemia, myeloma, pancreatic, colon and breast cancer cells, most of which involve the bone marrow as a primary or as a metastatic tumor site. This novel therapy disrupts the tumor microenvironment by affecting the two main steps of metastasis—extravasation and adhesion—thus blocking E-selectin reduces tumor dissemination. Additionally, uproleselan mobilized cancer cells from the protective vascular niche into the circulation, making them more susceptible to chemotherapy. Several preclinical and clinical studies summarized herein demonstrate that uproleselan has favorable safety and pharmacokinetics and is a tumor microenvironment-disrupting agent that improves the efficacy of chemotherapy, reduces side effects such as neutropenia, intestinal mucositis and infections, and extends overall survival. This review highlights the critical contribution of E-selectin and its specific antagonist, uproleselan, in the regulation of cancer growth, dissemination, and drug resistance in the context of the bone marrow microenvironment.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyong Zhang ◽  
Fengdan Xu ◽  
Zengrong Liu ◽  
Ruiqi Wang ◽  
Tieqiao Wen

As a class of small noncoding RNAs, microRNAs (miRNAs) regulate stability or translation of mRNA transcripts. Some reports bring new insights into possible roles of microRNAs in modulating cell cycle. In this paper, we focus on the mechanism and effectiveness of microRNA-mediated regulation in the cell cycle. We first describe two specific regulatory circuits that incorporate base-pairing microRNAs and show their fine-tuning roles in the modulation of periodic behavior. Furthermore, we analyze the effects ofmiR369-3on the modulation of the cell cycle, confirming thatmiR369-3plays a role in shortening the period of the cell cycle. These results are consistent with experimental observations.


2021 ◽  
Vol 21 ◽  
pp. S76-S77
Author(s):  
Madelon de Jong ◽  
Natalie Papazian ◽  
A. Cathelijne Fokkema ◽  
Sabrin Tahri ◽  
Zoltán Kellermayer ◽  
...  

2021 ◽  
Vol 21 ◽  
pp. S93
Author(s):  
Yao Yao ◽  
Woojun D Park ◽  
Eugenio Morelli ◽  
Mehmet K Samur ◽  
Nicholas Kwiatkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document