scholarly journals Ecosystem Services in Short Rotation Coppice Forestry on Former Arable Land

Author(s):  
Vita Krēsliņa ◽  
Dagnija Lazdiņa ◽  
Guntis Brumelis

Abstract The rising global population size has placed increasing demands for acquisition and sustainable use of renewable resources and carbon sink. One of the ways to meet this demand and realise Green deal is by planting fast growing trees such as Alnus incana, Betula pendula, Salix sp., Populus tremuloides x Populus tremula for short rotation forestry (SRF) or short rotation coppice (SRC). The area of these plantations is increasing. The main benefit of these plantations is renewable wood energy. There can be also additional benefits for ecosystem services if the plantation is fully used. The aim of the study was to describe the ecosystem services offered by SRC and SRF in comparison to intensive agriculture. We studied the occurrence of herbaceous plant species in an experimental tree stand in Skriveri district in Latvia. The cover of plants was estimated in plots. The results showed a multitude of other ecosystem services offered by the plantation. In grassland belts between tree rows, provisioning ecosystem services included plants for medicinal purposes and teas, as well as forage species for livestock feed. Regulating ecosystem services included nectar plants for pollination with added value of honey production. The most intensive blooming and pollen season was from April to October, when 20 species of nectar plants were blooming. Trees and herbs with microbial nitrogen fixing associations had potential for soil improvement. The fast-growing trees can sequester carbon and mitigate climate change. Compared to cultivated grassland with one or a few species, SRC and SRF provides a greater variety of ecosystem services.

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1352
Author(s):  
Nerea Oliveira ◽  
César Pérez-Cruzado ◽  
Isabel Cañellas ◽  
Roque Rodríguez-Soalleiro ◽  
Hortensia Sixto

Developing a circular bioeconomy based on the sustainable use of biological resources, such as biomass, seems to be the best way of responding to the challenges associated with global change. Among the many sources, short rotation forest crops are an essential instrument for obtaining quality biomass with a predictable periodicity and yield, according to the areas of cultivation. This review aims to provide an overview of available knowledge on short rotation coppice Populus spp. plantations under Mediterranean conditions and specifically in Spain, in order to identify not only the status, but also the future prospects, for this type of biomass production. The analysis of available information was conducted by taking into consideration the following aspects: Genetic plant material; plantation design, including densities, rotation lengths and the number of rotations, and mixtures; management activities, including irrigation, fertilization, and weed control; yield prediction; biomass characterization; and finally, an evaluation of the sustainability of the plantation and ecosystem services provided. Despite advances, there is still much to be done if these plantations are to become a commercial reality in some Mediterranean areas. To achieve this aim, different aspects need to be reconsidered, such as irrigation, bearing in mind that water restrictions represent a real threat; the specific adaptation of genetic material to these conditions, in order to obtain a greater efficiency in resource use, as well as a greater resistance to pests and diseases or tolerance to abiotic stresses such as drought and salinity; rationalizing fertilization; quantifying and valuing the ecosystem services; the advance of more reliable predictive models based on ecophysiology; the specific characterization of biomass for its final use (bioenergy/bioproducts); technological improvements in management and harvesting; and finally, improving the critical aspects detected in environmental, energy, and economic analyses to achieve profitable and sustainable plantations under Mediterranean conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1251
Author(s):  
Giovanni Pecchioni ◽  
Simona Bosco ◽  
Iride Volpi ◽  
Alberto Mantino ◽  
Federico Dragoni ◽  
...  

Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses.


2016 ◽  
Vol 13 (1) ◽  
pp. 95-113 ◽  
Author(s):  
S. Sabbatini ◽  
N. Arriga ◽  
T. Bertolini ◽  
S. Castaldi ◽  
T. Chiti ◽  
...  

Abstract. The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short-rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. This period corresponded to a single rotation of the SRC site. The REF site was a crop rotation between grassland and winter wheat, i.e. the same management of the SRC site before the conversion to short-rotation coppice. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. The measurements began 2 years after the conversion of arable land to SRC so that an older poplar plantation was used to estimate the soil organic carbon (SOC) loss due to SRC establishment and to estimate SOC recovery over time. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled. A GHG emission offset, due to the substitution of natural gas with SRC biomass, was credited to the GHG budget of the SRC site. Emissions generated by the use of biomass (FEXP) were also considered. Suitability was finally assessed by comparing the GHG budgets of the two sites. CO2 uptake was 3512 ± 224 g CO2 m−2 at the SRC site in 2 years, and 1838 ± 107 g CO2 m−2 at the REF site. FEXP was equal to 1858 ± 240 g CO2 m−2 at the REF site, thus basically compensating for FCO2, while it was 1118 ± 521 g CO2 m−2 at the SRC site. The SRC site could offset 379.7 ± 175.1 g CO2eq m−2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN made up 2 and 4 % in the GHG budgets of SRC and REF sites respectively, while the SOC loss was 455 ± 524 g CO2 m−2 in 2 years. Overall, the REF site was close to neutrality from a GHG perspective (156 ± 264 g CO2eq m−2), while the SRC site was a net sink of 2202 ± 792 g CO2eq m−2. In conclusion the experiment led to a positive evaluation from a GHG viewpoint of the conversion of cropland to bioenergy SRC.


2016 ◽  
Vol 90 ◽  
pp. 15-21 ◽  
Author(s):  
Humbertode Jesus Eufrade Junior ◽  
Raoni Xavier de Melo ◽  
Maria Márcia Pereira Sartori ◽  
Saulo Philipe Sebastião Guerra ◽  
Adriano Wagner Ballarin

2013 ◽  
Vol 373 (1-2) ◽  
pp. 269-283 ◽  
Author(s):  
Gonzalo Berhongaray ◽  
I. A. Janssens ◽  
J. S. King ◽  
R. Ceulemans

2019 ◽  
Vol 16 (1) ◽  
pp. 20-24
Author(s):  
Martin Hauptvogl ◽  
Tomáš Peszeki

Abstract The renewable energy sources play an important role in the discussions on the future energy generation. The European Union has set certain goals to increase the share of renewable energy sources and to reduce carbon emissions. The paper focuses on the evaluation of energy production from short rotation coppice (SRC) plantations in the cadastral area of Nové Zámky. The study area is located in south-western Slovakia. The energy production was evaluated based on GIS analysis of agricultural land suitable for establishment of short rotation coppice plantations. The high-quality arable land was excluded from the biomass production. The wood biomass should be produced on marginal, low-quality soils and contaminated or degraded land that is unsuitable for food production. There are only high and medium-quality soils classified in the qualitative groups 1–7 in the study area. The land potentially used for biomass production represents an area of 1,536 ha. If the whole area would be covered by short rotation coppice plantations, it would produce 4.8 kWh/day per person. Taking into consideration the overall losses of 33% in the process of the energy conversion, the potential power from the wood biomass production is 3.2 kWh/day per person. The plantations would provide 61 new jobs in the study area.


2014 ◽  
Vol 377 (1-2) ◽  
pp. 423-438 ◽  
Author(s):  
M. Stauffer ◽  
C. Leyval ◽  
J.-J. Brun ◽  
P. Leportier ◽  
J. Berthelin

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 410 ◽  
Author(s):  
Jessica Rebola-Lichtenberg ◽  
Peter Schall ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Ludger Leinemann ◽  
...  

Short rotation coppices play an increasing role in providing wooden biomass for energy. Mixing fast-growing tree species in short rotation coppices may result in complementary effects and increased yield. The aim of this study was to analyze the effect on mortality of eight different poplar genotypes (Populus sp.) in mixed short rotation coppices with three different provenances of the N-fixing tree species black locust (Robinia pseudoacacia L.). Pure and mixed stands were established at two sites of contrasting fertility. Survival of poplar was assessed for each tree two times a year, for a period of three years. In the first two years, high variation in mortality was observed between the genotypes, but no significant differences between pure and mixed stands were identified. However, three years after planting, higher mortality rates were observed in the mixtures across all poplar genotypes in comparison to pure stands. The expected advantage on growth of combining an N-fixing tree with an N-demanding tree species, such as poplar, was overshadowed by the Robinia’s dominance and competitiveness.


Sign in / Sign up

Export Citation Format

Share Document