scholarly journals DNA Hypermethylation of a panel of genes as an urinary biomarker for bladder cancer diagnosis

Author(s):  
Petros Georgopoulos ◽  
Maria Papaioannou ◽  
Soultana Markopoulou ◽  
Aikaterini Fragou ◽  
George Kouvatseas ◽  
...  

Abstract PurposeThe aim of this study was to explore the diagnostic potential of a panel of five hypermethylated gene promoters in bladder cancer. Individuals with primary BCa and control individuals matching the gender, age and smoking status of the cancer patients were recruited. DNA methylation was assessed for the gene promoters of RASSF1, RARβ, DAPK, hTERT and APC in urine samples collected by spontaneous urination. Fifty patients and 35 healthy controls were recruited, with average age of 70.26 years and average smoking status of 44.78 pack-years. In the BCa group, DNA methylation was detected in 27(61.4%) samples. RASSF1 was methylated in 52.2% of samples. Only 3(13.6%) samples from the control group were methylated, all in the RASSF1 gene promoter. The specificity and sensitivity of this panel of genes to diagnose BCa was 86% and 61% respectively. The RASSF1 gene could diagnose BCa with specificity 86.4% and sensitivity 52.3%. Promoter DNA methylation of this panel of five genes could be further investigated as urine biomarker for the diagnosis of BCa. The RASSF1 could be a single candidate biomarker for predicting BCa patients versus controls. Studies are required in order to develop a geographically adjusted diagnostic biomarker for BCa.Trial registration: ACTRN12620000258954

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2517-2517
Author(s):  
Emily A Saunderson ◽  
Kevin Rouault-Pierre ◽  
John G. Gribben ◽  
Gabriella Ficz

Introduction The epigenome is significantly perturbed in hematological malignancies with global DNA hypomethylation and localized hypermethylation of gene promoter CpG islands. Whether specific gene promoter hypermethylation can contribute to the clonal expansion of hematopoietic stem and progenitor cells (HSPCs) in humans by affecting HSPC biology, independently of genetic mutations, has not previously been investigated due to the lack of appropriate tools. We show for the first time that it is possible to target de novo DNA methylation using CRISPR/Cas9 in human CD34+ cells isolated from cord blood (CB). DNA methylation targeted to key cell cycle control gene promoters, INK4b (p15) and ARF (p14), is permanently maintained after dCas9 3A3L degradation and inherited as cells differentiate; inhibiting gene expression and affecting the colony forming potential of CD34+ cells. This demonstrates that specific DNA hypermethylation events can permanently change HSPC biology and impact differentiation, potentially contributing to pre-malignant processes. Methods Human CD34+ HSPCs were isolated from human CB and maintained in liquid culture for 24 hours before nucleofection with mRNA encoding an adapted form of CRISPR/Cas9 which has no nuclease activity (dCas9) and is fused to the catalytic domain of DNA methyltransferase 3A (DNMT3A) and 3L (3A3L). The nucleofection cocktail contained dCas9 3A3L or dCas9 3A3L-mut (lacks methyltransferase activity) and 1 to 3 guide RNAs to target DNA methylation to combinations of the INK4a-ARF-INK4b locus. Cells were then seeded into methylcellulose for a primary colony forming assay (CFU). Colonies were scored after 14 days and cells were either harvested and pooled or individual colonies were picked for single-colony molecular analyses. The DNA was extracted and methylation at the INK4a-ARF-INK4b promoters was quantified using targeted bisulfite sequencing; target gene expression was measured using qPCR. The remaining cells from the primary CFU were re-plated a second (secondary CFU) and third (tertiary CFU) time and colonies were again scored after 14 days. Results and Conclusions Targeting DNA methylation to the INK4a-ARF-INK4b locus or INK4b individually in human CD34+ cells resulted in maintenance of hypermethylation at ARF and/or INK4b gene promoters in individual BFU-E (burst-forming unit-erythroid) and CFU-GM (granulocyte, macrophage) colonies as measured by single-colony targeted bisulfite sequencing after the primary CFU; causing heritable repression of INK4b gene expression in the differentiated cells. Some CpGs were up to 90% methylated, indicating that DNA methylation added at these gene promoters is highly stable as cells differentiate. Hypermethylation of ARF and INK4b was found in some colonies even after the tertiary CFU, demonstrating long-term maintenance of promoter hypermethylation. Unexpectedly, no DNA hypermethylation was detected at INK4a in differentiated cells, but whether this is the case for all subpopulations of HSPCs (i.e. HSCs or lymphoid progenitors) is under investigation. Hypermethylation of INK4b and ARF increased the colony forming potential of CD34+ cells in primary, secondary and tertiary CFUs, compared to the control. Conversely, methylation targeted to INK4b alone did not significantly affect the number of colonies in the first CFU, and decreased the number of colonies in the secondary CFU. This suggests a complex interplay between key cell cycle regulators ARF and INK4b in CD34+ cells and during differentiation which can be disrupted by DNA hypermethylation and gene repression. These findings demonstrate the novel insights we can gain by using CRISPR/Cas9 tools to target DNA methylation and these investigations will reveal how gene promoter hypermethylation can impact HSPC function. Furthermore, studying this locus may uncover an important role for DNA hypermethylation in the development of myeloid malignancies, since INK4b is frequently hypermethylated, but rarely mutated, in myeloid dysplastic/proliferative neoplasms and acute myeloid leukemia. Disclosures Gribben: Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


2018 ◽  
Vol 33 (2) ◽  
pp. 77-82
Author(s):  
Iu. A. Koroleva ◽  
A. A. Zarubin ◽  
A. V. Markov ◽  
A. N. Kazancev ◽  
O. L. Barbarash ◽  
...  

Complications of atherosclerosis remain the leading cause of morbidity and mortality worldwide. MiRNAs are short regulatory molecules that are involved in all processes of pathogenesis. Expression of miRNAs is regulated by DNA methylation. Methylation and/or expression of MIR10B and MIR21 genes are known to vary in atherosclerotic tissues of the arteries, but there is no data about the changes in the methylation levels of these genes in blood leukocytes and their association with atherosclerosis risk factors.Objective.To evaluate the association of methylation levels of MIR10B and MIR21 genes in the blood leukocytes with risk factors and pathogenetically significant traits of carotid atherosclerosis.Material and Methods. DNA for the study was extracted from the samples of blood leukocytes of 122 patients with advanced carotid atherosclerosis as well as from blood leukocytes of 135 individuals in the control group. The DNA methylation level was analyzed by bisulfite pyrosequencing.Results.The methylation level of the MIR10B and MIR21 genes in leukocytes of patients with atherosclerosis is higher than in the leukocytes of the control group. In leukocytes of patients with carotid atherosclerosis the methylation level of the MIR21 gene promoter was correlated with type 2 diabetes and serum cholesterol level, and the methylation level of the coding region of the MIR10B gene was correlated with smoking.Conclusions.The level of DNA methylation in the regions of MIR10B and MIR21 genes in blood leukocytes is associated with the risk of advanced atherosclerosis of the carotid arteries. 


2018 ◽  
Vol 127 (04) ◽  
pp. 226-233 ◽  
Author(s):  
Makrina Karaglani ◽  
Georgia Ragia ◽  
Maria Panagopoulou ◽  
Ioanna Balgkouranidou ◽  
Evangelia Nena ◽  
...  

AbstractSulfonylureas are insulin secretagogues which act in pancreatic β cells by blocking the KATP channels encoded by KCNJ11 and ABCC8 genes. In the present study, a pharmacoepigenetic approach was applied for the first time, investigating the correlation of KCNJ11 and ABCC8 gene promoter methylation with sulfonylureas-induced mild hypoglycemic events as well as the KCNJ11 E23K genotype. Sodium bisulfite-treated genomic DNA of 171 sulfonylureas treated T2DM patients previously genotyped for KCNJ11 E23K, including 88 that had experienced drug-associated hypoglycemia and 83 that had never experienced hypoglycemia, were analyzed for DNA methylation of KCNJ11 and ABCC8 gene promoters via quantitative Methylation-Specific PCR. KCNJ11 methylation was detected in 19/88 (21.6%) of hypoglycemic and in 23/83 (27.7%) of non-hypoglycemic patients (p=0.353), while ABCC8 methylation in 6/83 (7.2%) of non-hypoglycemic and none (0/88) of the hypoglycemic patients (p=0.012). Methylation in at least one promoter (KCNJ11 or ABCC8) was significantly associated with non-hypoglycemic patients who are carriers of KCNJ11 EK allele (p=0.030). Our data suggest that ABCC8 but not KCNJ11 methylation is associated to hypoglycemic events in sulfonylureas-treated T2DM patients. Furthermore, it is demonstrated that the KCNJ11 E23K polymorphism in association to either of the two genes’ DNA methylation may have protective role against sulfonylurea-induced hypoglycemia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1365-1365
Author(s):  
Jumpei Yamazaki ◽  
Rodolphe F Taby ◽  
Aparna Vasanthakumar ◽  
Trisha Macrae ◽  
Kelly R Ostler ◽  
...  

Abstract Abstract 1365 TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30 patients). By contrast, only 1/30 patients had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A. By bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutant and wild-type cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We confirmed only two non-CpG island promoters, AIM2 and SP140, as hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14 475 genes) previously found to be hypermethylated in TET2 mutant cases. This finding shows that hypermethylation of both AIM2 and SP140 are bona fide markers of TET2 mutant cases in CMML. On the other hand, total 5-methylcytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases. Thus, TET2 mutations have a limited impact on promoter DNA methylation in CMML. To confirm this, we performed genome-wide analysis using a next-generation sequencing method for DNA methylation levels in three TET2 mutant cases. TET2 mutant CMMLs had an average of 230 (1.9%) promoter CpG island sites hypermethylated compared to normal blood, which is close to what is generally observed when one compares cancer to normal. By contrast, all three cases had near normal to increased levels of methylation outside CpG islands. The median methylation levels in non-promoter, non-CpG island sites was 88.7% in normal blood compared to 91.7%, 92.1% and 94.6% in the three TET2 mutant cases. Thus, TET2 mutant CMMLs escape the general hypomethylation phenomenon seen in many cancers. All together, our data suggest that TET2 mutant CMML cases may have distinct DNA methylation patterns primarily outside gene promoters. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Rajender Rao Kalashikam ◽  
Padmavathi JN Inagadapa ◽  
Anju Elizabeth Thomas ◽  
Sugeetha Jeyapal ◽  
Nappan Veettil Giridharan ◽  
...  

ISRN Urology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Ahmed Yaqinuddin ◽  
Sohail A. Qureshi ◽  
Shahid Pervez ◽  
Mohammed Umair Bashir ◽  
Ressam Nazir ◽  
...  

DNA methylation has emerged as a potentially robust biomarker for prostate cancer (PCa). Since DNA methylomes appear to be disease as well as population specific, we have assessed the DNA methylation status of RASSF1A, APC, and p16 (potential biomarkers of PCa) in Pakistani population. Primary prostate cancer tissues were obtained from 27 formalin-fixed paraffin-embedded blocks (FFPE) of cancer patients who underwent radical prostatectomy and transurethral resection of prostate (TURP) during 2003–2008. As controls, twenty-four benign prostatic FFPE tissues were obtained from patients who underwent TURP for benign prostatic hyperplasia during 2008. DNA was extracted, and methylation-specific PCR was used to assess the methylation status for RASSF1A, APC, and p16 gene promoters. Our results revealed that the RASSF1A promoter was hypermethylated in all the tested cancer samples but was also hypermethylated in 3 out of 24 control tissues. The APC promoter was hypermethylated in 15 out of 27 cancer samples and in none of the control samples. Strikingly, none of the samples showed methylation at the p16 promoter. Our findings suggest that RASSF1A and APC gene promoters are frequently hypermethylated in the Pakistani population and therefore have the potential to develop into universally dependable biomarkers for detecting PCa.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2013 ◽  
Vol 45 (14) ◽  
pp. 597-605 ◽  
Author(s):  
Christopher A. Koczor ◽  
Eva K. Lee ◽  
Rebecca A. Torres ◽  
Amy Boyd ◽  
J. David Vega ◽  
...  

Human dilated cardiomyopathy (DCM) is characterized by congestive heart failure and altered myocardial gene expression. Epigenetic changes, including DNA methylation, are implicated in the development of DCM but have not been studied extensively. Clinical human DCM and nonfailing control left ventricle samples were individually analyzed for DNA methylation and expressional changes. Expression microarrays were used to identify 393 overexpressed and 349 underexpressed genes in DCM (GEO accession number: GSE43435 ). Gene promoter microarrays were utilized for DNA methylation analysis, and the resulting data were analyzed by two different computational methods. In the first method, we utilized subtractive analysis of DNA methylation peak data to identify 158 gene promoters exhibiting DNA methylation changes that correlated with expression changes. In the second method, a two-stage approach combined a particle swarm optimization feature selection algorithm and a discriminant analysis via mixed integer programming classifier to identify differentially methylated gene promoters. This analysis identified 51 hypermethylated promoters and six hypomethylated promoters in DCM with 100% cross-validation accuracy in the group assignment. Generation of a composite list of genes identified by subtractive analysis and two-stage computation analysis revealed four genes that exhibited differential DNA methylation by both methods in addition to altered gene expression. Computationally identified genes ( AURKB, BTNL9, CLDN5, and TK1) define a central set of differentially methylated gene promoters that are important in classifying DCM. These genes have no previously reported role in DCM. This study documents that rigorous computational analysis applied to microarray analysis of healthy and diseased human heart samples helps to define clinically relevant DNA methylation and expressional changes in DCM.


2017 ◽  
Vol 39 (8) ◽  
pp. 764-768 ◽  
Author(s):  
Nervana M. K. Bayoumy ◽  
Mohamed M. El-Shabrawi ◽  
Ola Farouk Leheta ◽  
Hamdy Hassan Omar

Sign in / Sign up

Export Citation Format

Share Document