scholarly journals Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis

2013 ◽  
Vol 45 (14) ◽  
pp. 597-605 ◽  
Author(s):  
Christopher A. Koczor ◽  
Eva K. Lee ◽  
Rebecca A. Torres ◽  
Amy Boyd ◽  
J. David Vega ◽  
...  

Human dilated cardiomyopathy (DCM) is characterized by congestive heart failure and altered myocardial gene expression. Epigenetic changes, including DNA methylation, are implicated in the development of DCM but have not been studied extensively. Clinical human DCM and nonfailing control left ventricle samples were individually analyzed for DNA methylation and expressional changes. Expression microarrays were used to identify 393 overexpressed and 349 underexpressed genes in DCM (GEO accession number: GSE43435 ). Gene promoter microarrays were utilized for DNA methylation analysis, and the resulting data were analyzed by two different computational methods. In the first method, we utilized subtractive analysis of DNA methylation peak data to identify 158 gene promoters exhibiting DNA methylation changes that correlated with expression changes. In the second method, a two-stage approach combined a particle swarm optimization feature selection algorithm and a discriminant analysis via mixed integer programming classifier to identify differentially methylated gene promoters. This analysis identified 51 hypermethylated promoters and six hypomethylated promoters in DCM with 100% cross-validation accuracy in the group assignment. Generation of a composite list of genes identified by subtractive analysis and two-stage computation analysis revealed four genes that exhibited differential DNA methylation by both methods in addition to altered gene expression. Computationally identified genes ( AURKB, BTNL9, CLDN5, and TK1) define a central set of differentially methylated gene promoters that are important in classifying DCM. These genes have no previously reported role in DCM. This study documents that rigorous computational analysis applied to microarray analysis of healthy and diseased human heart samples helps to define clinically relevant DNA methylation and expressional changes in DCM.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2517-2517
Author(s):  
Emily A Saunderson ◽  
Kevin Rouault-Pierre ◽  
John G. Gribben ◽  
Gabriella Ficz

Introduction The epigenome is significantly perturbed in hematological malignancies with global DNA hypomethylation and localized hypermethylation of gene promoter CpG islands. Whether specific gene promoter hypermethylation can contribute to the clonal expansion of hematopoietic stem and progenitor cells (HSPCs) in humans by affecting HSPC biology, independently of genetic mutations, has not previously been investigated due to the lack of appropriate tools. We show for the first time that it is possible to target de novo DNA methylation using CRISPR/Cas9 in human CD34+ cells isolated from cord blood (CB). DNA methylation targeted to key cell cycle control gene promoters, INK4b (p15) and ARF (p14), is permanently maintained after dCas9 3A3L degradation and inherited as cells differentiate; inhibiting gene expression and affecting the colony forming potential of CD34+ cells. This demonstrates that specific DNA hypermethylation events can permanently change HSPC biology and impact differentiation, potentially contributing to pre-malignant processes. Methods Human CD34+ HSPCs were isolated from human CB and maintained in liquid culture for 24 hours before nucleofection with mRNA encoding an adapted form of CRISPR/Cas9 which has no nuclease activity (dCas9) and is fused to the catalytic domain of DNA methyltransferase 3A (DNMT3A) and 3L (3A3L). The nucleofection cocktail contained dCas9 3A3L or dCas9 3A3L-mut (lacks methyltransferase activity) and 1 to 3 guide RNAs to target DNA methylation to combinations of the INK4a-ARF-INK4b locus. Cells were then seeded into methylcellulose for a primary colony forming assay (CFU). Colonies were scored after 14 days and cells were either harvested and pooled or individual colonies were picked for single-colony molecular analyses. The DNA was extracted and methylation at the INK4a-ARF-INK4b promoters was quantified using targeted bisulfite sequencing; target gene expression was measured using qPCR. The remaining cells from the primary CFU were re-plated a second (secondary CFU) and third (tertiary CFU) time and colonies were again scored after 14 days. Results and Conclusions Targeting DNA methylation to the INK4a-ARF-INK4b locus or INK4b individually in human CD34+ cells resulted in maintenance of hypermethylation at ARF and/or INK4b gene promoters in individual BFU-E (burst-forming unit-erythroid) and CFU-GM (granulocyte, macrophage) colonies as measured by single-colony targeted bisulfite sequencing after the primary CFU; causing heritable repression of INK4b gene expression in the differentiated cells. Some CpGs were up to 90% methylated, indicating that DNA methylation added at these gene promoters is highly stable as cells differentiate. Hypermethylation of ARF and INK4b was found in some colonies even after the tertiary CFU, demonstrating long-term maintenance of promoter hypermethylation. Unexpectedly, no DNA hypermethylation was detected at INK4a in differentiated cells, but whether this is the case for all subpopulations of HSPCs (i.e. HSCs or lymphoid progenitors) is under investigation. Hypermethylation of INK4b and ARF increased the colony forming potential of CD34+ cells in primary, secondary and tertiary CFUs, compared to the control. Conversely, methylation targeted to INK4b alone did not significantly affect the number of colonies in the first CFU, and decreased the number of colonies in the secondary CFU. This suggests a complex interplay between key cell cycle regulators ARF and INK4b in CD34+ cells and during differentiation which can be disrupted by DNA hypermethylation and gene repression. These findings demonstrate the novel insights we can gain by using CRISPR/Cas9 tools to target DNA methylation and these investigations will reveal how gene promoter hypermethylation can impact HSPC function. Furthermore, studying this locus may uncover an important role for DNA hypermethylation in the development of myeloid malignancies, since INK4b is frequently hypermethylated, but rarely mutated, in myeloid dysplastic/proliferative neoplasms and acute myeloid leukemia. Disclosures Gribben: Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


1987 ◽  
Vol 7 (1) ◽  
pp. 398-402
Author(s):  
T Rutherford ◽  
A W Nienhuis

The contribution of the human globin gene promoters to tissue-specific transcription was studied by using globin promoters to transcribe the neo (G418 resistance) gene. After transfection into different cell types, neo gene expression was assayed by scoring colony formation in the presence of G418. In K562 human erythroleukemia cells, which express fetal and embryonic globin genes but not the adult beta-globin gene, the neo gene was expressed strongly from a fetal gamma- or embryonic zeta-globin gene promoter but only weakly from the beta promoter. In murine erythroleukemia cells which express the endogenous mouse beta genes, the neo gene was strongly expressed from both beta and gamma promoters. In two nonerythroid cell lines, human HeLa cells and mouse 3T3 fibroblasts, the globin gene promoters did not allow neo gene expression. Globin-neo genes were integrated in the erythroleukemia cell genomes mostly as a single copy per cell and were transcribed from the appropriate globin gene cap site. We conclude that globin gene promoter sequences extending from -373 to +48 base pairs (bp) (relative to the cap site) for the beta gene, -385 to +34 bp for the gamma gene, and -555 to +38 bp for the zeta gene are sufficient for tissue-specific and perhaps developmentally specific transcription.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


2021 ◽  
Author(s):  
Petros Georgopoulos ◽  
Maria Papaioannou ◽  
Soultana Markopoulou ◽  
Aikaterini Fragou ◽  
George Kouvatseas ◽  
...  

Abstract PurposeThe aim of this study was to explore the diagnostic potential of a panel of five hypermethylated gene promoters in bladder cancer. Individuals with primary BCa and control individuals matching the gender, age and smoking status of the cancer patients were recruited. DNA methylation was assessed for the gene promoters of RASSF1, RARβ, DAPK, hTERT and APC in urine samples collected by spontaneous urination. Fifty patients and 35 healthy controls were recruited, with average age of 70.26 years and average smoking status of 44.78 pack-years. In the BCa group, DNA methylation was detected in 27(61.4%) samples. RASSF1 was methylated in 52.2% of samples. Only 3(13.6%) samples from the control group were methylated, all in the RASSF1 gene promoter. The specificity and sensitivity of this panel of genes to diagnose BCa was 86% and 61% respectively. The RASSF1 gene could diagnose BCa with specificity 86.4% and sensitivity 52.3%. Promoter DNA methylation of this panel of five genes could be further investigated as urine biomarker for the diagnosis of BCa. The RASSF1 could be a single candidate biomarker for predicting BCa patients versus controls. Studies are required in order to develop a geographically adjusted diagnostic biomarker for BCa.Trial registration: ACTRN12620000258954


2018 ◽  
Vol 127 (04) ◽  
pp. 226-233 ◽  
Author(s):  
Makrina Karaglani ◽  
Georgia Ragia ◽  
Maria Panagopoulou ◽  
Ioanna Balgkouranidou ◽  
Evangelia Nena ◽  
...  

AbstractSulfonylureas are insulin secretagogues which act in pancreatic β cells by blocking the KATP channels encoded by KCNJ11 and ABCC8 genes. In the present study, a pharmacoepigenetic approach was applied for the first time, investigating the correlation of KCNJ11 and ABCC8 gene promoter methylation with sulfonylureas-induced mild hypoglycemic events as well as the KCNJ11 E23K genotype. Sodium bisulfite-treated genomic DNA of 171 sulfonylureas treated T2DM patients previously genotyped for KCNJ11 E23K, including 88 that had experienced drug-associated hypoglycemia and 83 that had never experienced hypoglycemia, were analyzed for DNA methylation of KCNJ11 and ABCC8 gene promoters via quantitative Methylation-Specific PCR. KCNJ11 methylation was detected in 19/88 (21.6%) of hypoglycemic and in 23/83 (27.7%) of non-hypoglycemic patients (p=0.353), while ABCC8 methylation in 6/83 (7.2%) of non-hypoglycemic and none (0/88) of the hypoglycemic patients (p=0.012). Methylation in at least one promoter (KCNJ11 or ABCC8) was significantly associated with non-hypoglycemic patients who are carriers of KCNJ11 EK allele (p=0.030). Our data suggest that ABCC8 but not KCNJ11 methylation is associated to hypoglycemic events in sulfonylureas-treated T2DM patients. Furthermore, it is demonstrated that the KCNJ11 E23K polymorphism in association to either of the two genes’ DNA methylation may have protective role against sulfonylurea-induced hypoglycemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4386-4386
Author(s):  
Ye Zhao ◽  
Zi-xing Chen ◽  
Shao-yan Hu ◽  
Jian-nong Cen

Abstract The methylation at CpG island in the promoter region of a gene is one of the important epigenetic mechanism which regulates the gene activity. To study the DNA methylation pattern of WT1 gene promoter region within hematologic neoplastic cell lines and its correlation with WT1 gene expression by using the PCR-based methods. RT-PCR and Methylation-specific PCR were performed to study the WT1 gene expression in 8226, HL-60, Jurkat, K562, KG-1, NB4, Raji, SHI-1, U266 and U937 cell lines and the DNA methylation status in promoter region of WT1 gene. After treatment of U937 cell line by 5-aza-CdR, a demethylation inducing agent, the changes of WT1 gene expression level and the methylation status in its promter region in U937 cells was determined. Our Results showed that HL-60, K562, KG-1, NB4, SHI-1 cell lines demonstrated higher level of WT1 expression, while extremely low level was found in 8226, Jurkat, Raji, U266 and U937. The DNA hypermethylation in WT1 gene promoter region was identified in 8226, Jurkat, Raji, U266 and U937 cell lines. The WT1 gene expression in U937 was markedly enhanced after treatment with 5-aza-CdR in company with the decrease of methylated level and the increase of unmethylated level in its promoter region. These results indicate that modulation of the DNA methylation in WT1 promoter region is one of the epigenetic mechanisms to regulate its expression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2436-2436
Author(s):  
L. Zhou ◽  
J. Opalinska ◽  
D. Sohal ◽  
R. Thompson ◽  
Y. Li ◽  
...  

Abstract Myelodysplasia (MDS) is a clonal hematopoietic disorder that leads to ineffective hematopoiesis and peripheral cytopenias. DNMT inhibitors such as azacytidine have led to clinical responses in patients, though the genes affected by epigenetic alterations are not well known. Whole genome DNA methylation was analyzed by a recently described novel method, The HELP assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR; Khulan et al, Genome Res. 2006 Aug;16(8)) that uses differential methylation specific restriction digestion by HpaII and MspI followed by amplification, two color labeling and cohybridization to quantitatively determine individual promoter island methylation. A whole genome human promoter array (Nimblegen) was used to determine the level of methylation of 25626 gene promoters by calculating HpaII/MspI cut fragment intensity ratio. Peripheral blood leucocytes from 13 patients with MDS were compared to 9 age matched normal and anemic controls. Gene expression analysis was performed using 37K oligo maskless arrays on cDNA obtained from the same samples. Analysis showed that whole genome methylation profiling has greater discriminatory power in separating clusters of MDS samples from normal and anemic controls when compared to gene expression analysis. Unsupervised clustering based on epigenetic profiling demonstrated that only two cases of early MDS clustered with normals as compared to absolutely no separation between MDS and normals with clustering based on gene expression patterns. A high correlation (r=0.88–0.96) was observed between global methylation profiles of matched sets of bone marrow and peripheral blood leucocyte samples from selected patients demonstrating that peripheral blood leucocytes can be a valid surrogate for epigenomic analysis. Further analysis showed that genes consistently aberrantly methylated in MDS included Syk kinase, HOXB3, several histone acetyltranferases and others. Functional analysis by Ingenuity showed that cancer and cell signaling pathways were the most affected by epigenetic silencing. Most interestingly, a large proportion of gene promoters were also aberrantly hypomethylated. These included genes from Ras oncogene family, the CDC42 GTPase, various methyl binding proteins and other proteins mainly encoding for cancer and hematopoiesis functional pathways, thus biologically validating our analysis. Therefore, our data demonstrates that MDS is characterized by distinct epigenetic aberrations that are preserved in peripheral blood leucocytes. These can be the basis of future studies on pathogenesis and diagnosis for this disease and can potentially uncover a new set of therapeutic gene targets.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 519-519 ◽  
Author(s):  
Fengdong Cheng ◽  
Zi Wang ◽  
Hongwei Wang ◽  
Karrune V. Woan ◽  
Eva Sahakian ◽  
...  

Abstract Abstract 519 We have previously shown that the pan-HDAC inhibitors LAQ824 and LBH589 inhibit IL-10 production in APCs, rendering these cells more inflammatory and capable of effectively priming naïve antigen-specific CD4+ T-cells and restoring the responsiveness of tolerant T-cells1. These findings led us to explore which HDAC(s) might be involved in the regulation of IL-10 gene transcription and be the putative target(s) of HDI-mediated IL-10 inhibition. To answer these questions we subjected the macrophage cell line RAW264.7 to shRNA screening using specific shRNAs to knockdown each known HDAC. We found that among all the HDACs, knocking down HDAC6 (HDAC6KD) was associated with a significant decrease in IL-10 mRNA and protein in response to LPS stimulation. Furthermore, HDAC6KD clones display an enhanced expression of the co-stimulatory molecule B7.2. Functionally, HDAC6KD cells were better activators of anti-HA (hemagglutinin-influenza) transgenic CD4+ T cells, leading to significantly enhanced production of IL-2 and IFN-g in response to cognate antigen. More importantly, anti-HA CD4+ anergic T cells isolated from animals bearing HA-expressing A20 B-cell lymphoma regained their ability to produce IL-2 and IFN-g when cultured in vitro with HDAC6KD cells. These results have been confirmed in APCs isolated from HDAC6 knock-out mice and in wild type APCs treated in vitro with isotype-selective HDAC6 inhibitors. Given that HDACs do not bind to DNA and they need to interact with transcription factors to regulate gene expression, we investigate next which transcription factor(s) HDAC6 might be associated with, to regulate IL-10 transcriptional activity. One likely candidate was Stat3, a well-known transcriptional activator of IL-10 gene expression that we have previously shown to play a central role in tolerance induction by APCs2. By co-immunoprecipitation studies we found that HDAC6 indeed interacts physically with Stat3. Of note, knocking down HDAC6 in APCs resulted in absence of Stat3 phosphorylation and decreased recruitment of Stat3 to the IL-10 gene promoter which might explain the inability of HDAC6KD cells to produce IL-10. The additional findings that IL-10 production by HDAC6KD cells was restored when these cells were transfected with a constitutively active mutant version of Stat3 (Stat3c) provides additional support for the important role of HDAC6 upon Stat3 activation. Further confirmation for a concerted regulatory mechanism involving HDAC6 and Stat3 in IL-10 gene regulation was provided by studies using CPA-7, a specific Stat3 inhibitor that disrupts Stat3 recruitment and binding to gene promoters. As expected, a complete abrogation of Stat3 recruitment to the IL-10 gene promoter was observed in CPA-7 treated APCs. Interestingly, such an effect was accompanied by a parallel decrease in HDAC6 recruitment to the IL-10 promoter and inhibition of IL-10 gene transcriptional activity. Taken together, we have shown for the first time that HDAC6 interacts physically with Stat3 and is required for its phosphorylation. Since Stat3 phosphorylation is absolutely necessary for activation of Stat3 target genes, HDAC6 inhibition is an enticing molecular approach to disrupt the Stat3/IL-10 axis and overcome tolerogenic mechanisms in APCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-33-SCI-33 ◽  
Author(s):  
Ari M. Melnick ◽  
Ross L Levine ◽  
Maria E Figueroa ◽  
Craig B. Thompson ◽  
Omar Abdel-Wahab

Abstract Abstract SCI-33 Epigenetic deregulation of gene expression through aberrant DNA methylation or histone modification plays an important role in the malignant transformation of hematopoietic cells. In particular, acute myeloid leukemias (AMLs) can be classified according to epigenetic signatures affecting DNA methylation or histone modifications affecting specific gene sets. Heterozygous somatic mutations in the loci encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in ∼20% of AMLs and are accompanied by global DNA hypermethylation and hypermethylation and silencing of a number of specific gene promoters. IDH1/2 mutations are almost completely mutually exclusive with somatic loss-of-function mutations in TET2, which hydroxylates methylcytosine (mCpG). DNA hydroxymethylation can function as an intermediate step in mCpG demethylation. TET2 mutant de novo AMLs also display global and promoter specific hypermethylation partially overlapping with IDH1/2 mutant cases. Mutations in the IDH1/2 loci result in a neomorphic enzyme that generates the aberrant oncometabolite 2-hydroxyglutarate (2HG) using α-ketoglutarate (αKG) as a substrate. 2HG can disrupt the activity of enzymes that use αKG as a cofactor, including TET2 and the jumonji family of histone demethylases. Expression of mutant IDH isoforms inhibits TET2 hydroxymethylation and jumonji histone demethylase functions. IDH and TET2 mutant AMLs accordingly exhibit reduced levels of hydroxymethylcytosine and a trend towards increased histone methylation. Mutant IDH or TET2 loss of function causes differentiation blockade and expansion of hematopoietic stem cells and TET2 knockout results in a myeloproliferative phenotype in mice. Hydroxymethylcytosine is in abundance in hematopoietic stem cells and displays specific distribution patterns, yet the function of this covalent modification is not fully understood. Recent data link TET2 with the function of cytosine deaminases as a pathway towards DNA demethylation, which has implications as well for B cell lymphomas and CML lymphoid blast crisis, which are linked with the actions of activation induced cytosine deaminase. Altogether, the available data implicate mutations in IDH1/2 and TET2 in promoting malignant transformation in several tissues, by disrupting epigenomics programming and altering gene expression patterning. Disclosures: Thompson: Agios Pharmaceuticals: Consultancy.


2005 ◽  
Vol 72 (S1) ◽  
pp. 34-43 ◽  
Author(s):  
Tina Lenasi ◽  
Nadja Kokalj-Vokac ◽  
Mojca Narat ◽  
Antonella Baldi ◽  
Peter Dovc

Casein genes are expressed in a tissue-specific and highly coordinated manner. The main goals of casein gene promoter studies are to unravel cis- and trans-acting factors involved in the complex signalling pathway controlling milk production, and to explore the possibility of using these promoters for tissue-specific production of heterologous proteins in the mammary gland. Here we present a comparative study of the equine β-casein and κ-casein gene proximal promoters. In order to confirm the assumption that in the horse, as in other mammalian species, casein genes are organized in a cluster located on a single chromosome, we performed in situ hybridization of pro-metaphase chromosomes with two BAC clones containing different equine casein genes. Sequence analysis of the β-casein and κ-casein gene proximal promoters revealed binding sites for activators (STAT5, GRE, NF1, MAF) and repressors (YY1, PMF), characteristic for casein genes. The alignments of casein gene promoters revealed the highest sequence identity in the proximal promoter region between the equine and human β-casein gene promoters. We directly compared the activity of equine β-casein and κ-casein gene promoters in vitro using bovine mammary gland cell line BME-UV1. In this system, the κ-casein gene proximal promoter activated the reporter gene expression more efficiently than the β-casein gene promoter of approximately the same length. The 810 bp of β-casein promoter activated the reporter gene expression more efficiently than the long fragment (1920 bp) and the 1206 bp fragment of the same promoter, which included also 396 bp of 5′ UTR.


Sign in / Sign up

Export Citation Format

Share Document