scholarly journals Special Hook Design for Hatch Cover Stocking Gantry Crane, Strength, Numerical Analysis under Static Loading

Author(s):  
Ömer Şengül ◽  
Menderes Kam

Abstract In this study, Computer-Aided Design (CAM) of special crane hooks used to close the stack type hatch covers used for sea freight transport, which is of great importance in our world, has been made. In this design, bolt and pin connections were preferred in the connections of the hook with the crane, as well as the connection with the welding performed in other studies. Thanks to these fasteners, corrosion events caused by the place of use and environmental conditions will also be prevented, and the strength values and reliability of the material will be increased. Critical sections with high-stress values on this design were determined by the Finite Element Method (FEM) with ANSYS R3 analysis program. In this design, the necessary improvements and strength calculations of the hook were made. Numerical calculations performed by the FEM and strength calculation results were compared. Results overlap: This, in turn, has been associated with the fact that the design made for us provides an optimal level of efficiency. These calculations are based on the data of St-37 structural steel. According to the results of these strength calculations, improvements were made in the design. As a result of improvements in special design and strength values for hatch cover stocking gantry Crane hooks, the design is expected to be standardized.

2021 ◽  
Author(s):  
Ömer ŞENGÜL ◽  
Menderes KAM

Abstract In this study, Computer-Aided Design (CAM) of special crane hooks used to close the stack type hatch covers used for sea freight transport, which is of great importance in our world, has been made. In this design, bolt and pin connections were preferred in the connections of the hook with the crane, as well as the connection with the welding performed in other studies. Thanks to these fasteners, corrosion events caused by the place of use and environmental conditions will also be prevented, and the strength values and reliability of the material will be increased. Critical sections with high-stress values on this design were determined by the Finite Element Method (FEM) with ANSYS R3 analysis program. In this design, the necessary improvements and strength calculations of the hook were made. Numerical calculations performed by the FEM and strength calculation results were compared. Results overlap: This, in turn, has been associated with the fact that the design made for us provides an optimal level of efficiency. These calculations are based on the data of St-37 structural steel. According to the results of these strength calculations, improvements were made in the design. As a result of improvements in special design and strength values for hatch cover stocking gantry Crane hooks, the design is expected to be standardized.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


2021 ◽  
Vol 1016 ◽  
pp. 1337-1343
Author(s):  
T. Lachana Dora ◽  
Niranjan Kumar Singh ◽  
Rajkumar Ohdar

There is a growing demand for more efficient and economic manufacturing process to improve product quality, reduce production cost, reduce lead time and increase productivity. The application of computer aided design and manufacturing (CAD/CAM) techniques to forging is becoming increasingly popular as the resulting improvements in yield and productivity. Modeling and simulation have become a major concern in recent and advanced research. In this paper die design for forging of an automobile component “Stub Axle” is presented. In die forging process, complex shape component cannot be made in one stage and therefore, the use of preform die becomes essential. The initial preform design was carried out by conventional method. The simulation has been carried out using software DEFORM-3D. The main goal of this study is to design an optimal preform shape resulting an optimal initial billet selection. Keywords:CAD/CAM, Preform, DEFORM-3D, Simulation, Forging


2016 ◽  
Vol 87 (6) ◽  
pp. 657-668 ◽  
Author(s):  
Keartisak Sriprateep ◽  
Erik LJ Bohez

A method is presented for modeling the tensile behavior of multifilament twisted yarns. A filament assembly model and a computer-aided design/computer-aided engineering (CAD/CAE) approach are proposed for the tensile analysis. The geometry of the twisted yarn and the nonlinear filament properties were considered. The finite element method (FEM) and large deformation effects were applied for computation of the stress–extension curves. Ideal yarn structures of five layers with different twist angles were simulated to predict the tensile behavior of each filament and each layer. The stress acting on the filaments after yarn extension could be directly analyzed by the FEM. The stress distribution in the filaments showed that the highest stress regions were located at the filament in the center of the yarn and decreased slightly to the yarn surface. The stress–extensions of the filaments were converted to yarn tensile behavior that is shown in terms of the maximum and average stress–extension curves. The results of this prediction model were compared with the stress–strain curves of high-tenacity rayon yarn and the energy method. The maximum stress–extension curves showed very good agreement with experimental results and are more accurate than those obtained by previous methods.


Author(s):  
V. V. Zhadnov ◽  
A. N. Zotov

This article discusses problems of importing data from system of CAD (Computer-Aided Design) to dependability prediction software. Characteristics of dependability of electronic modules to a large extent define reliability of electronic equipment which contains them. Dependability of electronic modules is established on the early stages of engineering and is usually calculated by special software. Obviously, the dependability prediction result accuracy will depend on the quality and fullness of input data. Thus, the purpose of this study is to improve the accuracy of dependability prediction of electronic modules calculation results in dependability prediction software by automating the process of inputting data about electrical components and PCB’s (Printed Circuit Board) from CAD-system. The object of the study is typical information about electronic modules which is needed to calculate dependability on early stages of engineering with taking into account the probabilistic characteristics of the life components of its electronic components. The subject of the study are methods, models and algorithms applicable to the transferring data from CAD-system to dependability prediction software. Based on results of analysis of existing data transferring methods between software packages from different vendors, usage of Excel tables and customizable templates was justified. Practical implementation of this method was developed for Altium Designer and ASONIKA-K-SCh dependability prediction software package. An import program was developed which allowed to transfer data from Altium Designer to ASONIKA-K-SCh using Excel tables and customizable templates. The import program as integrated into ASONIKA-K-SCh software. Practical usage showed that it allowed not only to reduce laboriousness of PCB’s and electronical components’ data inputting, but also to reduce a great amount of possible mistakes.


2021 ◽  
Vol 5 (2) ◽  
pp. 53
Author(s):  
Romario A Wicaksono ◽  
Eddy Kurniawan ◽  
M Khalid Syafrianto ◽  
Ramadhani Fadelandro Suratman ◽  
M Ridho Sofyandi

<p><em>The process of designing and manufacturing a Cartesian 3D printer model based on Fused Deposition Modelling (FDM) is carried out to produce a 3D printer machine that can perform the printing process accurately and quickly. In this research, the process is divided into three stages, namely designing using Computer-Aided Design (CAD) software, printing and assembling components of a 3D printer machine, and analysing the mechanical structure of a 3D printer machine. This 3D printer is designed to carry out the printing process with an area of 180x180x150 mm. Some components of 3D printing machines use Polylactic Acid (PLA). The simulation results based on the Finite Element Method show that the 3D printer engine is feasible to produce printing with a mass of 40% of the maximum possible load.</em></p>


2017 ◽  
Vol 11 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Hans-Rudolf Weiss ◽  
Nicos Tournavitis ◽  
Xiaofeng Nan ◽  
Maksym Borysov ◽  
Lothar Paul

Background: High correction bracing is the most effective conservative treatment for patients with scoliosis during growth. Still today braces for the treatment of scoliosis are made by casting patients while computer aided design (CAD) and computer aided manufacturing (CAM) is available with all possibilities to standardize pattern specific brace treatment and improve wearing comfort. Objective: CAD / CAM brace production mainly relies on carving a polyurethane foam model which is the basis for vacuuming a polyethylene (PE) or polypropylene (PP) brace. Purpose of this short communication is to describe the workflow currently used and to outline future requirements with respect to 3D printing technology. Method: Description of the steps of virtual brace adjustment as available today are content of this paper as well as an outline of the great potential there is for the future 3D printing technology. Results: For 3D printing of scoliosis braces it is necessary to establish easy to use software plug-ins in order to allow adding 3D printing technology to the current workflow of virtual CAD / CAM brace adjustment. Textures and structures can be added to the brace models at certain well defined locations offering the potential of more wearing comfort without losing in-brace correction. Conclusions: Advances have to be made in the field of CAD / CAM software tools with respect to design and generation of individually structured brace models based on currently well established and standardized scoliosis brace libraries.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yun-feng Liu ◽  
Ying-ying Fan ◽  
Hui-yue Dong ◽  
Jian-xing Zhang

The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.


Sign in / Sign up

Export Citation Format

Share Document