scholarly journals A study on the effect of pore and particle distributions on the soil water characteristic curve of compacted loess

Author(s):  
Yu Wang ◽  
Tonglu Li ◽  
Chenxi Zhao ◽  
Xiaokun Hou ◽  
Ping Li ◽  
...  

Abstract Compacted loess soil is used as a geo-material in many engineering projects such as building foundations and highway embankments. Water infiltration characteristics and post settlement of the compacted loess in large construction projects of Northwest China have received increasing attention from researchers and investors. These behaviors are closely related to the soil water characteristics. This study aims to investigate the soil water characteristic curves (SWCCs) of compacted loess soil with different dry densities and to reveal the responsible micro-mechanisms for soil water characteristics. Loess soil collected from the new district of Yan'an City, China, is prepared into five dry density groups. The SWCC of each group in the suction range of 0–100,000 kPa is measured using the filter paper method (FPM). Two-dimensional (2D) images and the pore size distribution (PSD) curves of the specimens are tested by scanning electron microscopy (SEM) and the mercury pressure method (MIP), respectively. The results of this study highlight that the compaction behavior mainly influences the pores with a radius ( r ) in the range of 1–10 μm, and has no influence on the pores of r < 0.5 μm. The particle shapes among the five dry densities groups are similar. The characteristics of the PSD curves of the compacted loess soil correspond well to the SWCCs. The suction of the SWCCs increases with increasing dry density in the lower suction range of 0–100 kPa. In contrast, suction among the five dry density groups is almost identical in the suction range exceeding 100 kPa. The results of the study are helpful to understand the SWCC and microstructure characteristics of compacted loess with different dry densities.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yu Wang ◽  
Tonglu Li ◽  
Ping Li ◽  
Yulu Lei ◽  
David D. Lawrence

To investigate the effect of dry density on the soil-water characteristics of compacted soil, loess used as filling in the land-making project of the Yan’an new district was collected and compacted to five initial dry densities of 1.40, 1.50, 1.60, 1.70, and 1.80 g/cm3, respectively. The soil-water characteristic curves (SWCCs) of all specimens in the range of 0–105 kPa were measured using the filter paper method. The measured data were fitted using the Fredlund and Xing equation for each initial dry density. The SWCCs have obvious differences in a suction range below 100 kPa and overlap when the suction range is higher. This suggests that the SWCC of compacted soil is independent of the initial dry density in the high suction range, but the correlation with the initial dry density exists in the low suction range. Therefore, the correlation functions of the parameters in the Fredlund and Xing equation with respect to the initial dry density were regressed, respectively. By substituting these functions into the Fredlund and Xing equation, the state surface function of θ w − ψ − ρ d was obtained and can reflect the SWCCs of all densities of the filled soil to support the further investigation of the unsaturated behavior of compacted soil.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian-Hua Shen ◽  
Ming-Jian Hu ◽  
Xing Wang ◽  
Chen-Yang Zhang ◽  
Dong-Sheng Xu

Investigating the soil-water characteristics of calcareous soil has a great significance for preventing geological disasters on island-reefs as well as maintaining the foundation stability of hydraulic-filled island-reefs. In this study, calcareous silty sands with different fines contents and dry densities were studied to reveal their effects on the soil-water characteristics of calcareous soil on hydraulic-filled island-reefs. The soil-water characteristic curve (SWCC) of the calcareous silty sand was measured using a pressure plate apparatus. Taking into account the porous meso-structure, the effects of fines content and dry density on the SWCC of calcareous silty sand were analyzed, and the applicability of existing SWCC models to calcareous silty sand was verified. A SWCC model suitable for assessing soil-water characteristic of calcareous silty sand was proposed. Results of this study provide some reference for quantifying the water-holding capacity of calcareous silty sand.


Author(s):  
Pan Hu ◽  
Qing Yang ◽  
Maotian Luan

The soil-water characteristic curve (SWCC) is a widely used experimental means for assessing fundamental properties of unsaturated soils for a wide range of soil suction values. The study of SWCC is helpful because some properties of unsaturated soils can be predicted from it. Nowadays, much attention has been paid to the behaviours of highly compacted bentonite-sand mixtures used in engineering barriers for high level radioactive nuclear waste disposal. It is very important to study the various performances of bentonite-sand mixtures in order to insure the safety of high-level radioactive waste (HLW) repository. After an introduction to vapor phase method and osmotic technique, a laboratory study has been carried out on compacted bentonite-sand mixtures. The SWCC of bentonite-sand mixtures has been obtained and analyzed. The results show that the vapor phase method and osmotic technique is suitable to the unsaturated soils with high and low suction.


2012 ◽  
Vol 204-208 ◽  
pp. 22-27
Author(s):  
Yan Zhu ◽  
Yun Xu Chen

Compression and collapse of unsaturated compacted loess are studied by using dry density and water content which easily controlled in engineering, the controlling range of dry density and water content are confirmed respectively. Then the deformation of compression and collapse and the frequency of engineering damager occurrence can be decreased. In addition, the mechanical characteristics of loess in different directions may differ because the loess was consolidated only under the condition of its upper weight of soil and load. The conventional mechanical experiments, including one-dimensional compress and collapse test, were conducted with the specimen of loess soil in different angle from the original horizontal plane. The test result shows that the loess is anisotropic


2015 ◽  
Vol 52 (9) ◽  
pp. 1331-1344 ◽  
Author(s):  
W.M. Yan ◽  
Guanghui Zhang

Experiments were undertaken to study the soil-water characteristics of compacted sandy soil (SS) and cemented soil (CS) in field and laboratory conditions. The influence of vegetation and material density on the development of negative pore-water pressure (PWP) and degree of saturation (Sr) in the studied materials was investigated. The field planting experiments demonstrated a promising survival rate of Schefflera heptaphylla in both types of material, while the (SS) promoted better growth of the seedlings than the cemented one. In the field study, PWP and Sr of the compacted SS responded noticeably and promptly to natural drying–wetting cycles. However, the responses in the CS were relatively mild. When subjected to the same drying–wetting cycles, PWP responded more slowly and to a smaller magnitude compared with that of the uncemented counterpart. In addition, Sr changed little in CS. An increase in the density of the SS promoted rapid development of negative PWP, while an opposite trend was observed for CS. Attempts have been made to explain the observations from the perspectives of material permeability and change in water content during a drying period in both soil types. Furthermore, in SS, the development of PWP (with a measurement limit of −90 kPa) was minimally affected by the presence of vegetation, while vegetation noticeably helped the development of negative PWP in CS. Bounds of the soil-water characteristic curve (SWCCs) of the studied materials were presented based on estimates from the drying and wetting scanning curves derived from the field monitoring. A corresponding laboratory study was carried out in an environmental chamber with controllable temperature and humidity. Monitoring results from the laboratory agreed qualitatively with those obtained from the field.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao Xie ◽  
Ping Li ◽  
Xiaokun Hou ◽  
Tonglu Li ◽  
Guowei Zhang

Soil-water characteristic curve (SWCC) is a key constitutive relationship for studying unsaturated soil, and as is known, microstructure of the soil has great influence on the mechanical behaviour of the soil. In this study, the wetting and drying soil-water characteristic curves (SWCCs) of loess compacted at three different water contents were measured using the filter paper method. And microproperties of compacted loess were obtained by the mercury intrusion method (MIP) and scanning electron microscope (SEM). Results show that the compaction water contents have significant influence on the SWCC and microstructure. The pore size distribution (PSD) curves have great differences in macropore range and are similar in micropore range. Loess compacted at optimum and dry of optimum are generally connected, while there are certain number of nonintruded pores in loess compacted at wet of optimum. The SWCC curves vary significantly in low suction (ua − uw < 1000 kPa) and tend to converge together in high suction (ua − uw ≥ 1000 kPa). Hysteresis in the SWCCs is more obvious for loess compacted at optimum and dry of optimum in the matric suction of 0∼100 kPa; however, there is a pronounced hysteresis for loess compacted at wet of optimum in full matric suction range. The characteristic of the SWCCs including their hysteresis can be well interpreted from the loess microstructure.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yongsheng Yao ◽  
Shenping Luo ◽  
Junfeng Qian ◽  
Jue Li ◽  
Hongbin Xiao

The soil-water characteristic curve of silty soil in seasonal frozen area during freezing-thawing process was studied in this study. By means of a laboratory test, specimens with different compaction degrees and different initial moisture content were prepared and put into the temperature change testing machine for freeze-thaw action. The influence of different degrees of compaction and different times of freeze-thaw action on SWCC of low liquid limit silt was analyzed, a V-G model was used to fit the test data, and a set of fitting parameters with a reference value was obtained. At the same time, the change of microstructure between soil particles during the freezing-thawing cycle is illustrated. The results showed that with the same water content and the same compactness, the matric suction of the test soil decreased with the increase of freeze-thaw cycles. For the same number of freeze-thaw cycles, the greater the compactness, the greater the matric suction of the soil. The V-G model can well represent the SWCC of low liquid limit silt during the freeze-thaw cycle.


Sign in / Sign up

Export Citation Format

Share Document