scholarly journals A Novel Approach for Protecting RPL Routing Protocol against Blackhole Attacks in IoT Networks

Author(s):  
Saeid Zangeneh ◽  
Rassoul Roustaei

Abstract Nowadays, we are witnessing an increasing trend towards interconnected devices. This process of connecting devices instead of people is called the Internet of Things (IoT). The main concept of IoT is to connect heterogeneous objects separately and centrally in different places using standard protocols. The general idea is to create an independent world using intelligent objects that have the ability to exchange information and make decisions. Connected objects allow users to monitor and track remotely and in real-time. IoT relies on the development of a low-power, high-throughput network to support communication between objects and their connection to the Internet. These networks are characterized by limited resources in terms of energy, memory, and processing. In the true sense of the Internet of Things, networks called 6LoWPAN were created, and a new routing protocol compatible with these networks, called RPL, was introduced. Due to the limited nature of RPL-based networks, they may be exposed to a variety of internal attacks. Neighbor attacks and DIS are specific attacks in this protocol. This study proposes a trust-based RPL routing protocol which deals with blackhole threats. Besides, it is shown that while our recommended system is secure against blackhole attacks, it doesn’t incur any unwanted expenses in terms of network traffic.

Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 442 ◽  
Author(s):  
Khudoyberdiev ◽  
Jin ◽  
Kim

The Internet of Things (IoT) is expected to deliver a whole range of new services to all parts of our society, and improve the way we work and live. The challenges within the Internet of Things are often related to interoperability, device resource constraints, a device to device connection and security. One of the essential elements of identification for each Internet of Things devices is the naming system and addresses. With this naming system, Internet of Things devices can be able to be discoverable by users. In this paper, we propose the IoT resource auto-registration and accessing indoor services based on Domain Name System (DNS) in the Open Connectivity Foundation (OCF) environment. We have used the Internet of Things Platform and DNS server for IoT Resource auto-registration and discovery in the Internet Protocol version 4 (IPv4). An existing system called Domain Name Auto-Registration in Internet Protocol version 6 can be used for Internet of Things devices for auto-registration and resource discovery. However, this system is not acceptable in the existing internet networks, because the highest percentage of the networks on the Internet are configured in Internet Protocol version 4. Through the proposed auto-registration system, clients can be able to discover the resources and access the services in the OCF network. Constrained Application Protocol (CoAP) is utilized for the IoT device auto-registration and accessing the services in the OCF network.


2018 ◽  
Vol 38 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Pablo Antonio Pico Valencia ◽  
Juan A. Holgado-Terriza ◽  
Deiver Herrera-Sánchez ◽  
José Luis Sampietro

Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.


Author(s):  
Faiza Medjek ◽  
Djamel Tandjaoui ◽  
Imed Romdhani ◽  
Nabil Djedjig

In the internet of things (IoT) vision, people, systems, and objects with sensing and/or actuating capabilities communicate to monitor and control the physical world. Nowadays, the IoT concept has attracted significant attention from different application domain such as healthcare and smart homes. Indeed, self-organization and self-configuration are key characteristics of IoT given that IoT represents a pervasive environment where objects are resource-constrained and communication technologies are very ubiquitous. These characteristics in addition to the vulnerability of objects themselves and of the communication channels make IoT more susceptible to malicious attacks. In this context, a deep analysis of IoT security breach and vulnerabilities is necessary. This chapter presents IoT requirements and existing threats as well as security protocols and mechanisms. It specifically analyzes existing and new threats against the IoT's routing protocol (the routing protocol for low-power and lossy networks: RPL) and presents intrusion detection solutions (IDS) to counter RPL attacks.


Author(s):  
Xiaoni Wang ◽  
◽  

Through ad hoc routing protocol AODVjr and resource-aware data mining algorithms research, a resource-aware clustering based routing protocol in the Internet of Things, RA-AODVjr, is proposed. It solves the short comings of the constrained resources of memory, computing power, and the power energy of the wireless sensor’s terminal node in the Internet of Things. RA-AODVjr protocol is designed combining with the RA-cluster and AODVjr routing protocol. This protocol selects the best neighbor in the terminal node and balances the network traffic when terminal node resource is constrained, using the relevance of the ad hoc network. The simulation results show that the agreement achieves load balancing of energy constrained nodes to a certain extent. Compared with the original AODVjr protocol, due to the best neighbor node delivery technology, the local network traffic gets a better balance and less time delay means better choice of routing.


2020 ◽  
Vol 10 (3) ◽  
pp. 1-17
Author(s):  
Asma Lahbib ◽  
Khalifa Toumi ◽  
Anis Laouiti ◽  
Steven Martin

MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 25-36
Author(s):  
Béla Genge ◽  
Călin Enăchescu

AbstractThe expansion of Internet has led to a variety of directly accessible devices and services. Nowadays, companies tend to increase the number of Internetfacing services in order to ensure higher visibility, and accessibility towards end-users. Nonetheless, this profound expansion towards an “Internet of Things” brings new opportunities to malicious actors. As a result, novel cyber-physical attacks bring new challenges to systems administrators in order to accommodate traditional user requests with security prerequisites. Therefore, in this paper we propose a novel approach for historical Internet connectivity assessment of services. The technique uses the output of the popular Shodan search engine to infer the lifetime of different Internet-facing services. Experimental results conducted on IP address blocks attributed to six different institutions distributed across four sectors (university, telecommunications, banking, and power) show different possible service lifetime patterns.


2021 ◽  
Vol 23 (07) ◽  
pp. 1499-1508
Author(s):  
Bhukya Suresh ◽  
◽  
G Shyama Chandra Prasad ◽  

Wireless Sensor Networks (WSNs) are a resource-constrained network class recognized as a major energy consumer. Wireless sensor technologies are used in many commercialized industrial automation processes and other real-world applications. The WSN protocol is well-suited to harsh situations where deployment is difficult or impossible, such as the battlefield, a toxic chemical plant, the cloud, fog computing, and the Internet of Things, but not in a high-temperature network infrastructure environment. WSNs have introduced various Energy-Efficient Routing Protocols based on network (NW) organization and protocols in recent years. Various WSN routing options for energy efficiency are explored in this work. The WSN Energy Efficient Routing Protocol is compared to other routing systems. We also compare and investigate better WSN routing algorithms for cloud computing, fog computing, and the Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document