scholarly journals Phenological mismatches between above- and below-ground plant responses to climate warming: a global synthesis

Author(s):  
Huiying Liu ◽  
Hao Wang ◽  
Nan Li ◽  
Junjiong Shao ◽  
Xuhui Zhou ◽  
...  

Abstract Climate warming is changing above-ground phenology of plants around the world1, 2. However, warming effects on below-ground phenology of plants are unclear despite that roots play a vital role in carbon cycling3. By conducting a global meta-analysis, we show a phenological mismatch between above- and below-ground plant responses to climate warming. Herbaceous plants advanced both the start and end of the growing season based on their above-ground responses, resulting into a shorter growing season. Below-ground phenophases did not exhibit any obvious changes in herbaceous plants. In contrast, climate warming did not affect the length of above-ground growing season but extended the below-ground growing season of woody plants. These results highlight that climate warming can differentially affect above- and below-ground plant phenology with mismatches arising in herbaceous plants via less responsive below-ground phenology whereas mismatches in woody plants via more responsive below-ground phenology. Mismatches in above- and below-ground plant phenology imply that terrestrial carbon cycling models exclusively based on above-ground responses are less accurate, which highlight the urgent need to incorporate below-ground plant phenology into future Earth system models.

2010 ◽  
Vol 18 (NA) ◽  
pp. 355-367 ◽  
Author(s):  
Elena L. Zvereva ◽  
Marja Roitto ◽  
Mikhail V. Kozlov

Identification of factors explaining diversity in plant responses to industrial pollution is crucial for predicting fates of polluted ecosystems. Meta-analysis based on 203 publications demonstrated that plants growing near point polluters showed similar decreases in characters reflecting growth (–13.1%) and reproduction processes (–8.5%). In herbaceous plants, root growth was reduced, while aboveground biomass did not change, because the decrease in leaf size was compensated by an increase in leaf number. In contrast, woody plants demonstrated no changes in allometry and their growth was reduced to a greater extent than growth of herbaceous plants. Raunkiaer’s classification of life forms appeared the best predictor of species’ responses to pollution. Within woody plants, trees and shrubs, but not dwarf shrubs, showed strong decreases in growth and reproduction. Within herbaceous plants, significant growth reduction was observed only in annuals. Longevity of foliage or plant phylogeny did not explain variation in species’ responses. Adverse effects of pollution were stronger in regions with higher temperature and precipitation, hinting that existing pollution loads may become more harmful for plants as climate changes. Relatively minor explanatory value of the characteristics of individual polluters removes one of the principal obstacles to accounting for the effects of pollution in vegetation models and allows extrapolation of the effects observed near point polluters to both regional and global scales. We conclude that losses in productivity of plant communities due to aerial pollution can be approximately estimated on the basis of the life form spectra and climate.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 619 ◽  
Author(s):  
Kai Yan ◽  
Shuang Zhang ◽  
Yahuang Luo ◽  
Zhenghong Wang ◽  
Deli Zhai ◽  
...  

Certainty over warming-induced biomass accumulation is essential for addressing climate change. However, no previous meta-analysis has investigated this accumulation across the whole of China; also unclear are the differences between herbaceous and woody species and across plant phylogeny, which are critical for corresponding re-vegetation. We extracted data from 90 field-based experiments to reveal general patterns and driving factors of biomass responses all over China. Based on traditional meta-analyses, a warmer temperature significantly increased above- (10.8%) and below-ground (14.2%) biomass accumulation. With increasing warming duration (WarmD) and plant clade age, both above-ground and below-ground biomass showed significant increases. However, for herbaceous versus woody plants, and the whole community versus its dominant species, responses were not always constant; the combined synergies would affect accumulative response patterns. When considering WarmD as a weight, decreases in total above-ground biomass response magnitude were presented, and the increase in below-ground biomass was no longer significant; notably, significant positive responses remained in tree species. However, if phylogenetic information was included in the calculations, all warming-induced plant biomass increases were not significant. Thus, it is still premature to speculate whether warming induces biomass increases in China; further long-term experiments are needed regarding phylogeny-based responses and interspecies relations, especially regarding woody plants and forests.


2021 ◽  
Vol 265 ◽  
pp. 06003
Author(s):  
Alexandra Kamygina ◽  
Maria Smirnova ◽  
Natalia Afanasyeva ◽  
Nadezhda Poddubnaya

The article presents the results of the study of aeropalinological spectra of the city of Cherepovets (59 ° 07′59 ″ N, 37 ° 53′59 ″ E), carried out during the growing season 2014-2015. The method of gravimetric sampling was used (Durham’s pollen trap). Data was obtained on 22 taxa and the dynamics of dusting of various palynomorphs; the dominant taxa of palinospectrum were identified, as well as non-pollen palynomorphs in the air. It is shown that Betula pollen grains prevail in the atmosphere of the city. The pollen of woody plants occupies 80% of the total spectrum, and the pollen of herbaceous plants – 20%. Seasonal highs are recorded twice: in May and in late June – early July. This information must be taken into account when accompanying patients with hay fever.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1133
Author(s):  
Wenjun Chen ◽  
Lori White ◽  
Sylvain G. Leblanc ◽  
Rasim Latifovic ◽  
Ian Olthof

Arctic temperatures have increased at almost twice the global average rate since the industrial revolution. Some studies also reported a further amplified rate of climate warming at high elevations; namely, the elevation dependency of climate change. This elevation-dependent climate change could have important implications for the fate of glaciers and ecosystems at high elevations under climate change. However, the lack of long-term climate data at high elevations, especially in the Arctic, has hindered the investigation of this question. Because of the linkage between climate warming and plant phenology changes and remote sensing’s ability to detect the latter, remote sensing provides an alternative way for investigating the elevation dependency of climate change over Arctic mountains. This study investigated the elevation-dependent changes to plant phenology using AVHRR (Advanced Very High Resolution Radiometer) time series from 1985 to 2013 over five study areas in Canada’s Arctic. We found that the start of the growing season (SOS) became earlier faster with an increasing elevation over mountainous study areas (i.e., Sirmilik, the Torngat Mountains, and Ivvavik National Parks). Similarly, the changes rates in the end of growing season (EOS) and the growing season length (GSL) were also higher at high elevations. One exception was SOS in the Ivvavik National Park: “no warming trend” with the May-June temperature at a nearby climate station decreased slightly during 1985–2013, and so no elevation-dependent amplification.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1150
Author(s):  
Emma Sumner ◽  
Susanna Venn

Climate change is expected to lead to changes to the amount, frequency, intensity, and timing of precipitation and subsequent water supply and its availability to plants in mountain regions worldwide. This is likely to affect plant growth and physiological performance, with subsequent effects to the functioning of many important high-elevation ecosystems. We conducted a quantitative systematic review and meta-analysis of the effects of altered water supply on plants from high elevation ecosystems. We found a clear negative response of plants to decreases in water supply (mean Hedges’ g = −0.75, 95% confidence intervals: −1.09 to −0.41), and a neutral response to increases in water supply (mean Hedges’ g = 0.10, 95% confidence intervals: 0.43 to 0.62). Responses to decreases in water supply appear to be related to the magnitude of change in water supply, plant growth form, and to the measured response attribute. Changes to precipitation and water supply are likely to have important consequences for plant growth in high elevation ecosystems, with vegetation change more likely be triggered by reductions than increases in growing season precipitation. High elevation ecosystems that experience future reductions in growing-season precipitation are likely to exhibit plant responses such as reduced growth and higher allocation of carbohydrates to roots.


2010 ◽  
Vol 2009 (6) ◽  
pp. 888-894 ◽  
Author(s):  
Yunyan WEI ◽  
Huajun YIN ◽  
Qing LIU ◽  
Yunxiang LI

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Garcia ◽  
M. Estrella Santamaria ◽  
Isabel Diaz ◽  
Manuel Martinez

AbstractThe success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerong Wang ◽  
Yue Sun ◽  
Mo Zhou ◽  
Naiqian Guan ◽  
Yuwen Wang ◽  
...  

Abstract Background Herbs are an important part of the forest ecosystem, and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances. Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone, this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning. Results The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity, they were mainly determined by seasonal changes. Across the entire growing season, the species with the highest importance values in thinning treatments included Carex pilosa, Aegopodium alpestre, Meehania urticifolia, and Filipendula palmata, which dominated the herb layer of the coniferous and broad-leaved mixed forest. The number of species, Margalef index, Shannon-Wiener index and Simpson index all had their highest values in May, and gradually decreased with months. Pielou index was roughly inverted “N” throughout the growing season. Thinning did not increase the species diversity. Thinning can promote the total biomass, above- and below-ground biomass. The number of plants per unit area and coverage were related to the total biomass, above- and below-ground biomass. The average height had a significantly positive correlation with herb biomass in May but not in July. However, it exerted a significantly negative correlation with herb biomass in September. The biomass in the same month increased with increasing thinning intensity. Total herb biomass, above- and below-ground biomass showed positive correlations with Shannon-Winner index, Simpson index and Pielou evenness index in May. Conclusions Thinning mainly changed the light environment in the forest, which would improve the plant diversity and biomass of herb layer in a short time. And different thinning intensity had different effects on the diversity of understory herb layer. The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.


2010 ◽  
Vol 36 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Rong Li ◽  
Shao-Lin Peng ◽  
Bao-Ming Chen ◽  
Yu-Ping Hou

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Courtney G. Collins ◽  
Sarah C. Elmendorf ◽  
Robert D. Hollister ◽  
Greg H. R. Henry ◽  
Karin Clark ◽  
...  

AbstractRapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Sign in / Sign up

Export Citation Format

Share Document