scholarly journals Analysis increase in the efficiency of a-Si: H solar cell due to the addition of an intrinsic layer to the p-i-n structure by ellipsometric spectroscopy

Author(s):  
SONI PRAYOGI ◽  
Yoyok Cahyono ◽  
Darminto D

Abstract Backround: In this study, we report for the first time that the addition of an intrinsic layer to the a-Si: H p-i-n solar cell structure greatly enhances the conversion efficiency. The a-Si: H p-i-n solar cells were grown using Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques on the Indium Tin Oxide (ITO) substrate and added an intrinsic layer with the p-i1-i2-n structure in order to prevent sunlight energy from being absorbed the first intrinsic layer can be absorbed by the second intrinsic layer. Result The a-Si: H p-i-n and p-i1-i2-n solar cells were characterized including optical properties, electrical properties, surface morphology, thickness, band-gap using Ellipsometric Spectroscopy (ES). Furthermore, from the optical constant and thin film thickness, the reflectance and transmittance of each sample were obtained. The p-i-n and p-i1-i2-n samples show good transparency in the infrared region and this transparency decreases in the visible light region shows an interference pattern with a sharp decrease in transmission at the absorption edge and the performance of solar cells (curve I-V) measured by use sun simulator and sunshine. Conclussion: Our results show that there is a very good increase in the efficiency of the a-Si: H p-i1-i2-n solar cells by 58.6% of the original p-i-n structure.

2017 ◽  
Vol 8 (6) ◽  
pp. 549-522
Author(s):  
Vytautas Makarskas ◽  
Mindaugas Jurevičius ◽  
Artūras Kilikevičius

Solar cells are one of the most popular renewable energy generation technologies, because they are reliable, low operating and maintenance costs, to conclude without any moving parts and is a boundless source of energy. In any solar cell can avoid mechanical vibrations, which may produce the solar cell glass, damage to the inner structure. In order to determine the influence of mechanical vibrations of the solar cell structure was carried out theoretical and experimental modal analysis. The study found dangerous solar cell frequencies and their deformation and optimize the method of attachment which provides a better solar cell stability. Saulės elementai – vieni populiariausių atsinaujinančių energijos gavybos technologijų, nes jie patikimi, jų mažos eksploatavimo ir priežiūros išlaidos, šie elementai sudaryti be jokių judančių dalių ir yra beribis energijos šaltinis. Bet saulės elementas neišvengia mechaninių virpesių, kurie gali įskelti saulės elemento stiklą, pažeisti vidinę konstrukciją. Siekiant nustatyti mechaninių virpesių įtaką saulės elemento konstrukcijai, buvo atliktos teorinės ir eksperimentinės modalinės analizės. Tyrime buvo rasti pavojingi saulės elemento dažniai ir jų deformacijos, rastas optimalus tvirtinimo būdas, kuris suteikia geresnį saulės elemento stabilumą.


2020 ◽  
Vol 20 (6) ◽  
pp. 3939-3942
Author(s):  
Nikhil Deep Gupta

The paper discusses and compares the Lambertian limits for light trapping (LT) in GaAs active layer based thin film solar cells as described by different mathematical theories and expressions. The Lambertian limits for thin film GaAs solar cell provide the maximum efficiency that can be achieved through LT structures and also indicate the advantage that these structure can provide for the design of GaAs thin film solar cell structure. The purpose to discuss difference Lambertian limit expressions is to understand and predict, which limiting benchmark value is more suited for nano LT structures based GaAs active material solar cells, considering GaAs material properties. The paper also compares these calculated limiting values with different nano LT structures including photonic crystal structures based designs proposed by the author. The aim is to check how much close a particular proposed structure is to the Lambertian values, so that we can predict that which is more suitable design to get best efficiency out of the single junction GaAs material based structure. The paper discussed the three Lambertian theories including that of Yablonovitch, Green and Schuster.


1997 ◽  
Vol 467 ◽  
Author(s):  
Joohyun Kohi ◽  
H. Fujiwara ◽  
C. R. Wronski ◽  
R. W. Collins

ABSTRACTWe have extended previous real time spectroscopie ellipsometry (RTSE) capabilities in order to investigate the effects of H2-plasma treatment of i-type hydrogenated amorphous silicon (a-Si:H) on the deposition of the overlying p-type microcrystalline silicon (μc-Si:H:B)) in the formation of an n-i-p solar cell structure. In this study, we compare in detail the nucleation and growth of p-layers by plasma-enhanced chemical vapor deposition (PECVD) from SiH4 highly diluted in H2 on the surfaces of untreated and H2-plasma treated a-Si:H i-layers. We find that for intended single-phase μc-Si:H:B p-layer PECVD under optimum conditions on an untreated i-layer surface, a wide gap (∼2.0 eV Taue gap) amorphous layer nucleates and grows in the first ∼150 Å. This layer develops uniformly to a bulk thickness of ∼150 Å, but gradually acquires a crystalline structure for thicknesses greater than the desired p-layer thickness (200 Å). In contrast, for p-layer PECVD under identical conditions on the H2-plasma treated i-layer, high-density crystalline nuclei form immediately. This conclusion is drawn on the basis of the unique optical properties of the bulk p-layer that develops on the surface of the H2-plasma treated i-layer. Specifically, an absorption onset near ∼2.5 eV is observed for a 48 Å fully-coalesced p-layer, as measured by RTSE at 200°C. For this μc-Si:H:B p-layer, the optical gap decreases by ∼0.15 eV with increasing thickness from 50 to 200 Å. This effect is attributed to a reduction in the quantum confinement energy with an increase in the average crystallite size in the film.


2019 ◽  
Vol 33 (24) ◽  
pp. 1950289 ◽  
Author(s):  
Khoulud Kh. AbuShaar ◽  
Mohammed M. Shabat ◽  
Dena M. El-Amassi ◽  
Daniel M. Schaadt

In this paper, photovoltaics (PV)- or solar cells based on two types of nanoparticles have been investigated. The suggested four-layer solar cell model consists of metallic nanoparticle (Ag–Au) layers that are Si-based and covered by SiN. The transmission and reflection of the incident light on the structure model have been computed for different physical parameters of the structure. Higher transmission and lower reflections have been obtained leading to higher efficiency of the solar cells. The matrix model is used, and the numerical results obtained by MAPLE Software Program. The obtained results confirm that the nanoparticle solar cell structure can effectively enhance the efficiency of such structure model.


1996 ◽  
Vol 426 ◽  
Author(s):  
Martin A. Green ◽  
Alistair B. Sproul ◽  
Tom Puzzer ◽  
Guang Fu Zheng ◽  
Paul Basore ◽  
...  

AbstractA new silicon parallel multilayer solar cell structure has recently been reported which can give high solar cell energy conversion efficiency from low quality silicon material. Advantages of this structure are described as is recent characterization work which compares the properties of grain boundaries in experimental devices to those predicted by earlier calculations.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Vidur Raj ◽  
Dipankar Chugh ◽  
Lachlan E. Black ◽  
M. M. Shehata ◽  
Li Li ◽  
...  

AbstractSurface passivation is crucial for many high-performance solid-state devices, especially solar cells. It has been proposed that 2D hexagonal boron nitride (hBN) films can provide near-ideal passivation due to their wide bandgap, lack of dangling bonds, high dielectric constant, and easy transferability to a range of substrates without disturbing their bulk properties. However, so far, the passivation of hBN has been studied for small areas, mainly because of its small sizes. Here, we report the passivation characteristics of wafer-scale, few monolayers thick, hBN grown by metalorganic chemical vapor deposition. Using a recently reported ITO/i-InP/p+-InP solar cell structure, we show a significant improvement in solar cell performance utilizing a few monolayers of hBN as the passivation layer. Interface defect density (at the hBN/i-InP) calculated using C–V measurement was 2 × 1012 eV−1cm−2 and was found comparable to several previously reported passivation layers. Thus, hBN may, in the future, be a possible candidate to achieve high-quality passivation. hBN-based passivation layers can mainly be useful in cases where the growth of lattice-matched passivation layers is complicated, as in the case of thin-film vapor–liquid–solid and close-spaced vapor transport-based III–V semiconductor growth techniques.


2017 ◽  
Vol 5 (19) ◽  
pp. 9182-9189 ◽  
Author(s):  
Gerard Masmitjà ◽  
Luís G. Gerling ◽  
Pablo Ortega ◽  
Joaquim Puigdollers ◽  
Isidro Martín ◽  
...  

Ni/V2Ox stacks applied to an interdigitated back-contacted n-type c-Si solar cell structure are explored, reaching cell efficiencies up to 19.7%.


RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89635-89643 ◽  
Author(s):  
Priyanka U. Londhe ◽  
Ashwini B. Rohom ◽  
Nandu B. Chaure

Highly crystalline and stoichiometric CIS thin films have been electrodeposited from non-aqueous bath at temperature 130 °C. Superstrate solar cell structure (FTO/CdS/CIS/Au) exhibited 4.5% power conversion efficiency.


2013 ◽  
Vol 16 (1) ◽  
pp. 101-111
Author(s):  
Chien Mau Dang ◽  
Tung Thanh Bui ◽  
Hung Thanh Le ◽  
Vu Ngoc Hoang ◽  
Linh Ngoc Tran ◽  
...  

In the heterojunction with intrinsic thin-layer (HIT) solar cell structure studied in this work, an intrinsic amorphous silicon (a-Si) layer followed by a n-type amorphous silicon was deposited on a p-type Czochralski (CZ) monocrystalline silicon (c-Si) wafer by plasma enhanced chemical vapor deposition (PECVD) method to form an heterojunction device. Then, indium tin oxide (ITO) layer was formed by DC magnetron sputtering as the top electrode and the anti-reflection coating layer. In order to obtain the high efficiency heterojunction structure, two important aspects were focused: improving the passivation properties of a-Si/c-Si heterojunction and reducing the light absorption and the sheet resistance of ITO layers. It was found that hydrogenated amorphous silicon (a- Si:H) layers can be grown at low substrate temperature, about 200°C. High-quality ITO layers with the sheet resistance less than 15 ohm/sq and the transmittance of about 70%, can be deposited at relatively low DC power (50W).


Sign in / Sign up

Export Citation Format

Share Document