scholarly journals Preliminary Analysis of African Swine Fever Virus Carriage and Transmission by Mosquitoes

Author(s):  
Weiyun Qin ◽  
Zhongcheng Gao ◽  
Shenglong Wu ◽  
Wenbin Bao

Abstract BackgroundMosquitoes are important insect vectors, but whether they can carry and transmit African swine fever virus (ASFV) in large-scale pig farms in China is unknown. ResultsIn this study, probe qPCR analysis was performed on mosquitoes from five pig farms with ASF virus (ASFV). Analysis of ASFV in 463 mosquitoes yielded negative cycle threshold (CT) value), and detection remained negative after mixing samples from all five pig farms. ConclusionsTherefore, mosquitoes appear unlikely to transmit ASFV, and pose little threat to large-scale pig farms. Thus, farms should continue to follow normal mosquito control procedures when formulating strategies for the prevention and control of ASF.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Weiyun Qin ◽  
Zhongcheng Gao ◽  
Shenglong Wu ◽  
Wenbin Bao

Abstract Background Mosquitoes are important insect vectors, but whether they can carry and transmit African swine fever virus (ASFV) in large-scale pig farms in China is unknown. Results In this study, probe-based qPCR analysis was performed on mosquitoes from five pig farms with ASF virus (ASFV). Analysis of ASFV in 463 mosquitoes yielded negative cycle threshold (CT) value), and detection remained negative after mixing samples from all five pig farms. Conclusions Therefore, mosquitoes appear unlikely to transmit ASFV, and pose little threat to large-scale pig farms. Thus, farms should continue to follow normal mosquito control procedures when formulating strategies for the prevention and control of ASF.



2021 ◽  
pp. 110798
Author(s):  
Xianghong Zhang ◽  
Xinmiao Rong ◽  
Juan Li ◽  
Meng Fan ◽  
Youming Wang ◽  
...  


Author(s):  
Hachung Yoon ◽  
Seong‐Keun Hong ◽  
Ilseob Lee ◽  
Deuk‐Soo Choi ◽  
Jong‐Ho Lee ◽  
...  


Author(s):  
J. Turčinavičienė ◽  
A. Petrašiūnas ◽  
R. Bernotienė ◽  
M. Masiulis ◽  
V. Jonušaitis


2019 ◽  
Vol 24 (1) ◽  
pp. 180 ◽  
Author(s):  
Ze Chen ◽  
Xiaofeng Xu ◽  
Yufeng Wang ◽  
Jinlong Bei ◽  
Xiufeng Jin ◽  
...  

In this study, we detected African Swine Fever Virus (ASFV) in Dermacentor (Ixodidae) from sheep and bovines using small RNA sequencing. To validate this result, a 235-bp DNA segment was detected in a number of DNA samples from D. silvarum and sheep blood. This 235-bp segment had an identity of 99% to a 235-bp DNA segment of ASFV and contained three single nucleotide mutations (C38T, C76T and A108C). C38T, resulting in a single amino acid mutation G66D, suggests the existence of a new ASFV strain, which is different from all reported ASFV strains in the NCBI GenBank database and the ASFV strain (GenBank: MH713612.1) reported in China in 2018. To further confirm the existence of ASFV in Dermacentor ticks, three DNA segments of ASFV were detected in D. niveus females from bovines and their first generation ticks reared in our lab. These results also proved that transovarian transmission of ASFV occurs in hard ticks. This study revealed for the first time that ASFV has a wider range of hosts (e.g. sheep and bovines) and vectors (e.g. hard ticks), beyond the well-known Suidae family and Argasidae (soft ticks). Our findings pave the way toward further studies on ASFV transmission and the development of prevention and control measures.



2021 ◽  
Vol 9 ◽  
Author(s):  
Jiang-Hong Hu ◽  
Xin Pei ◽  
Gui-Quan Sun ◽  
Zhen Jin

African swine fever first broke out in mainland China in August 2018 and has caused a substantial loss to China’s pig industry. Numerous investigations have confirmed that trades and movements of infected pigs and pork products, feeding pigs with contaminative swills, employees, and vehicles carrying the virus are the main transmission routes of the African swine fever virus (ASFV) in mainland China. However, which transmission route is more risky and what is the specific transmission map are still not clear enough. In this study, we crawl the data related to pig farms and slaughterhouses from Baidu Map by writing the Python language and then construct the pig transport network. Following this, we establish an ASFV transmission model over the network based on probabilistic discrete-time Markov chains. Furthermore, we propose spatiotemporal backward detection and forward transmission algorithms in semi-directed weighted networks. Through the simulation and calculation, the risk of transmission routes is analyzed, and the results reveal that the infection risk for employees and vehicles with the virus is the highest, followed by contaminative swills, and the transportation of pigs and pork products is the lowest; the most likely transmission map is deduced, and it is found that ASFV spreads from northeast China to southwest China and then to west; in addition, the infection risk in each province at different times is assessed, which can provide effective suggestions for the prevention and control of ASFV.



2018 ◽  
Author(s):  
Ze Chen ◽  
Xiaofeng Xu ◽  
Xiaojun Yang ◽  
Weihao Dou ◽  
Xiufeng Jin ◽  
...  

In this study, we aimed to detect viruses in hard ticks using the small RNA sequencing based method. A 235-bp DNA segment was detected in Dermacentor nuttalli (hard ticks) and D. silvarum (hard ticks) from sheep and bovine, respectively. The detected 235-bp segment had an identity of 99% to a 235-bp DNA segment of African Swine Fever Virus (ASFV) and contained three single nucleotide mutations (C38T, C76T and A108C). C38T, resulting in an single amino acid mutation G66D, suggests the existence of a new ASFV strain, which is different from all reported ASFV strains in NCBI GenBank database. These results also suggest that ASFV could have a wide range of hosts or vectors, beyond the well known Suidae family and soft ticks. Our findings pave the way toward further studies of ASFV transmission and development of prevention and control measures.



Author(s):  
D. Ragland ◽  
R. M. Pogranichniy ◽  
O. S. Yurchenko ◽  
V. V. Bashinskiy ◽  
A. P. Gerilovych ◽  
...  

With monetary support from the United States Department of Agriculture Foreign Agricultural Service (USDA FAS), an investigative effort was undertaken to document the biosecurity practices employed by commercial pig producers in Ukraine to prevent the introduction of African swine fever virus (ASFV) on their farms. The cohort of farms selected and evaluated were owned by producers who were active members of the Association of Ukrainian Pig Breeders (AUPB). The assessment of biosecurity policies and practices consisted of an interview and in-person completion of a questionnaire that evaluated various aspects of biosecurity practices used on pig farms in Ukraine. The results of the interviews and completion of survey questionnaires support the conclusion that Ukrainian pig producers recognize the importance of farm biosecurity as it relates to preventing ASFV introduction on their farms and all the participating farms had biosecurity policies that were in force at the time of completion of the questionnaire. However, the results also support the conclusion that significant gaps in understanding about biosecurity exists and that there is a need for more education of Ukrainian pig producers about this critical aspect of health management and disease control. The broad impact of the project detailed that prospective, more comprehensive work on Ukrainian pig farms is required to adequately assist producers with ASFV control and effective applications of biosecurity



2022 ◽  
Author(s):  
Mengnan Qi ◽  
Li Pan ◽  
Ying Gao ◽  
Miao Li ◽  
Yanjin Wang ◽  
...  

African swine fever (ASF) is a highly contagious disease with high morbidity and mortality caused by African swine fever virus (ASFV). Cleaning and disinfection remain one of the most effective biosecurity measures to prevent and control the spread of ASFV. In this study, we evaluated the inactivation effects of highly complexed iodine (HPCI) combined with compound organic acids (COAs) against ASFV under different conditions. The results showed that the inactivation rates of the disinfectants on the reporter ASFV increased in dose- and time-dependent manners, the best inactivation effects were obtained when the compatibility ratio of HPCI and COAs was 5:1 at 25°C. Furthermore, there were no significant differences by comparing the efficacy of HPCI combined with COAs (HPCI+COAs) in inactivating wild-type ASFV and the reporter ASFV (P > 0.05). ASFV of 104.0 TCID50/mL was completely inactivated by 0.13% HPCI (0.0065% effective iodine), 0.06% COAs or 0.13% HPCI+COAs (approximately 0.0054% effective iodine), respectively, while 106.0 TCID50/mL ASFV was completely inactivated by 1.00% HPCI (0.05% effective iodine), 0.50% COAs or 1.00% HPCI+COAs (0.042% effective iodine), respectively. Therefore, HPCI+COAs had synergistic effects to inactivate ASFV. This study demonstrated that HPCI+COAs could rapidly and efficiently inactivate ASFV and represent an effective compound disinfectant for the control of ASF.



Author(s):  
Jianhe Hu ◽  
Halyna Rebenko ◽  
Jingjing Zhang

African swine fever remains one of most economically threatened diseases that has been hurting to the swine industry in Ukraine since 2014 and in China since 2018. African swine fever is an acute, highly lethal infectious disease caused by African swine fever virus, which has occurred and spread in many countries around the world, causing a catastrophic blow to the swine industry in the affected countries. ASFV is characterized of large genome, encoding 150-200 proteins, including variety of immunoregulatory proteins, which can resist immunity. African swine fever virus mainly enters pigs through the respiratory and digestive tract. The target cells infected are mainly mononuclear-macrophages, and the receptor is still unclear. Research on the development of diagnostic techniques and tests related to African swine fever are continuing and their proper using is crucial. There are many studies on African swine fever virus vaccines, including inactivated vaccines, attenuated vaccines, subunit vaccines and genetic vaccines. But so far these vaccines have not been able to protect domestic pigs from African swine fever virus infection. The article mainly reviews the researches of ASF virus, epidemiology, pathogenesis, diagnostic techniques and attempts to vaccine`s develop, that provides theoretical basis for the prevention and control of ASF.



Sign in / Sign up

Export Citation Format

Share Document