scholarly journals The Inhibitory Effect of Cyclodextrin on Oxygen Bioavailability Is a Key Factor for the Metabolic Flux Redistribution Towards Steroid Alcohols in Phytosterol Resting Cells Bioconversion

Author(s):  
Xuedong Wang ◽  
Kuan Chen ◽  
Dandan Cao ◽  
Dongzhi Wei

Abstract In the present work, we tried to identify the mechanism why by which the steroid alcohols accumulated when hydroxypropyl-β-cyclodextrin (HP-β-CD) was present to enhance the sterol conversion rate. Compared with the bioconversion system without HP-β-CD, the reaction rate was greatly improved in presence of HP-β-CD, but the steroid alcohols largely accumulated concurrently. The concentration of steroid alcohols increased with the enhanced reaction rate and the higher intracellular NADH/NAD+ level was detected. Mycobacterium neoaurum mutants with higher KshA activity (3-ketosteroid 9α-hydrolase, a monooxygenase hydroxylating the nucleus at C-9 at the expense of NAD(P)H consumption) reduced the steroid alcohols production and in the meantime, the NADH/NAD+ level was decreased consequently. Further research found that oxygen availability was seriously inhibited by the cyclodextrin in a reaction system. These results indicated that NADH formed in the bioconversion was not properly regenerated via the respiratory chain because of the poor oxygen bioavailability. The inhibitory effect of cyclodextrin on oxygen bioavailability is a key factor for the metabolic flux redistribution towards steroid alcohols in phytosterol resting cells bioconversion.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ying Li ◽  
He Xian ◽  
Ya Xu ◽  
Yuan Zhu ◽  
Zhijie Sun ◽  
...  

Abstract Background Natural glycolysis encounters the decarboxylation of glucose partial oxidation product pyruvate into acetyl-CoA, where one-third of the carbon is lost at CO2. We previously constructed a carbon saving pathway, EP-bifido pathway by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and “bifid shunt”, to generate high yield acetyl-CoA from glucose. However, the carbon conversion rate and reducing power of this pathway was not optimal, the flux ratio of EMP pathway and pentose phosphate pathway (PPP) needs to be precisely and dynamically adjusted to improve the production of mevalonate (MVA). Result Here, we finely tuned the glycolytic flux ratio in two ways. First, we enhanced PPP flux for NADPH supply by replacing the promoter of zwf on the genome with a set of different strength promoters. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, pfkA was finely down-regulated by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system. The MVA yield of the regulated strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. Conclusion This is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.


2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Pedro Cavalcanti Ferreira ◽  
Leonardo Fonseca da Silva

AbstractThis article examines the effects of sectorial shifts and structural transformation on the recent productivity path of Latin America. We use a four-sector (agriculture, industry, modern services and traditional services) general equilibrium model calibrated to the main economies in the region. The model very closely replicates labor reallocations across sectors and the growth of aggregate labor productivity from 1950 to 2005. Structural transformation explains a sizeable portion of the region’s convergence in the first decades. In most cases, the poor performance of the traditional services sector is the main cause of the slowdown in productivity growth observed in the region after the mid-1970s and is a key factor in explaining the divergence during this period.


1970 ◽  
Vol 33 (11) ◽  
pp. 1231-1233 ◽  
Author(s):  
KUNIO HIWADA ◽  
TATSUO KOKUBU ◽  
YUICHI YAMAMURA

1972 ◽  
Vol 28 (2) ◽  
pp. 165-166 ◽  
Author(s):  
T. Kokubu ◽  
K. Hiwada ◽  
E. Ueda ◽  
Y. Yamamura

1996 ◽  
Vol 316 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Justine S. HARVEY ◽  
Gillian M. BURGESS

Prior exposure of cultured neonatal rat dorsal root ganglion (DRG) neurons to bradykinin resulted in marked attenuation of bradykinin-induced activation of phosphoinositidase C (PIC). The (logconcentration)–response curve for bradykinin-induced [3H]inositol trisphosphate ([3H]IP3) formation was shifted to the right and the maximum response was reduced. Bradykinin increases cyclic GMP (cGMP) in DRG neurons [Burgess, Mullaney, McNeill, Coote, Minhas and Wood (1989) J. Neurochem. 53, 1212–1218] and treatment of the neurons with dibutyryl cGMP (dbcGMP) had a similar, inhibitory, effect on bradykinin-induced [3H]IP3 formation. NG-Nitro-L-arginine (LNNA) blocked bradykinin-induced formation of cGMP. It prevented the functional uncoupling induced by pretreatment with bradykinin, but not the inhibitory effect of dbcGMP on [3H]IP3 formation. The ability of LNNA to prevent desensitization was reversed by excess L-arginine, indicating that its actions were mediated through inhibition of nitric oxide synthase. In addition to functional desensitization, exposure to bradykinin reduced the number of cell-surface receptors detected with [3H]bradykinin, without affecting its KD value for the remaining sites. In contrast to bradykinin, pretreatment with dbcGMP had no effect on either the KD or Bmax for [3H]bradykinin binding. This implies that the inhibitory effect of dbcGMP was downstream from the binding of bradykinin to its receptor and upstream of IP3 formation. The lack of effect of dbcGMP on [3H]bradykinin binding suggests that the decrease in receptor number induced by bradykinin was mediated by a different mechanism and was not a key factor in the rapid phase of desensitization in these cells.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Long Guo ◽  
Baolong Liu ◽  
Chen Zheng ◽  
Hanxun Bai ◽  
Hao Ren ◽  
...  

The present study aimed to investigate whether leucine affects the pancreatic exocrine by controlling the antisecretory factor (AF) and cholecystokinin receptor (CCKR) expression as well as the proteasome activity in pancreatic acinar cells of dairy calves. The pancreatic acinar cells were isolated from newborn Holstein bull calves and cultured using the Dulbecco’s modified Eagle’s medium/nutrient mixture F12 Ham’s liquid (DMEM/F12). There were six treatments of leucine dosage including 0 (control), 0.23, 0.45, 1.35, 4.05, and 12.15 mM, respectively. After culture for 3 h, the samples were collected for subsequent analysis. As the leucine concentration increased from 0 to 1.35 mM, the α-amylase activity in media decreased significantly (P<0.05), while further increase in leucine concentration did not show any decrease in α-amylase activity. Addition of leucine inhibited (P<0.05) the expression of AF and CCKR, and decreased the activity of proteasome (P<0.05) by 76%, 63%, 24%, 7%, and 9%, respectively. Correlation analysis results showed α-amylase secretion was negatively correlated with leucine concentration (P<0.01), and positively correlated with proteasome activity (P<0.01) and the expression of CCK1R (P<0.01) and AF (P<0.05). The biggest regression coefficient was showed between α-amylase activity and proteasome (0.7699, P<0.001). After inhibition of proteasome by MG-132, low dosage leucine decreased (P<0.05) the activity of proteasome and α-amylase, as well as the expression of CCK1R. In conclusion, we demonstrated that the high-concentration leucine induced decrease in α-amylase release was mainly by decreasing proteasome activity.


Author(s):  
Xi Yang

The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize the nanofiltration (NF) membrane. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein, two effective strategies are applied to reduce the IP reaction rate: (1) the introduction of hydrophilic interlayers between the porous substrate and the formed polyamide layer; (2) the addition of macromolecular additives in the aqueous solution of PIP. As a result, in-situ FT-IR spectroscopy was firstly used to monitor the IP reaction of PIP/TMC reaction system, with hydrophilic interlayers or macromolecular additives. Moreover, we study the formed polyamide layer growth on the substrate, in a real-time manner. The in-situ FT-IR experimental results confirm that the IP reaction rates are effectively suppressed and the formed polyamide thickness reduces from 138&plusmn;24 nm to 46&plusmn;2 nm. Furthermore, the optimized NF membrane with excellent performance are consequently obtained, which include the boosted water permeation flux about 141~238 (L&middot;m2&middot;h/MPa) and superior salt rejection of Na2SO4 &gt; 98.4%.


Sign in / Sign up

Export Citation Format

Share Document