scholarly journals Identification of Viruses Infecting Cigar and Flue-cured Tobacco Using Next Generation Sequencing and Establishment of Multiplex RT-PCR

Author(s):  
Tao Zhou ◽  
Shidong Zhou ◽  
Yong Chen ◽  
Jun Wang ◽  
Ruina Zhang ◽  
...  

Abstract Early, precise and simultaneous identification of the plant viruses is of great significance on preventing the spread of the viruses as well as reducing losses on agricultural yield. In this study, identification of plant viruses from symptomatic samples collected from cigar tobacco planting area in Deyang and flue-cured tobacco planting area in Luzhou city of Sichuan Province China was conducted by the deep sequencing of small RNAs (sRNAs) through an Illumina sequencing platform and plant virus specific contigs were generated based on the virus derived siRNA sequences. Additionally, sequence alignment and phylogenetic analysis was performed to determine the species or strains of these viruses. A total of 27930450, 21537662 and 28194021 clean reads were generated from three pooled samples with a total of 105 contigs being mapped to the closest plant viruses with the length range from 34~1720 nt. The results indicated that the major viruses were potato virus Y (PVY), Chilli veinal mottle virus (ChiVMV), tobacco vein banding mosaic virus (TVBMV), tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Subsequently, a fast and sensitive multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed for the simultaneous detection of the most frequent RNA viruses infecting cigar and flue-cured tobacco in Sichuan. These results provide theoretical basis and convenient methods for rapid detection and control of viruses on cigar and flue-cured tobacco.

2021 ◽  
Author(s):  
Tao Zhou ◽  
Shidong Zhou ◽  
Yong Chen ◽  
Jun Wang ◽  
Ruina Zhang ◽  
...  

Abstract Backgrounds: Infection of plant viruses cause extensive damage to plants and reduce crop yield. Early, precise and simultaneous identification of the plant viruses is of great significance on preventing the spread of the viruses as well as reducing losses on agricultural yield.Methods: Identification of plant viruses from symptomatic samples collected from cigar tobacco planting area in Deyang and flue-cured tobacco planting area in Luzhou city of Sichuan Province China was conducted by the deep sequencing of small RNAs (sRNAs) through an Illumina sequencing platform and plant virus specific contigs were generated based on the virus derived siRNA sequences. Additionally, sequence alignment and phylogenetic analysis was performed to determine the species or strains of these viruses. Subsequently, specific primers were designed for simultaneous detection of five RNA viruses infecting tobacco.Results: A total of 27930450, 21537662 and 28194021 clean reads were generated from three pooled samples and a total of 105 contigs that can be mapped to the closest plant viruses with the length range from 34~1720 nt. The results indicated that the major viruses were potato virus Y (PVY), Chilli veinal mottle virus (ChiVMV), tobacco vein banding mosaic virus (TVBMV), tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). A fast and sensitive multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed for the simultaneous detection of the most frequent RNA viruses infecting cigar and flue-cured tobacco in Sichuan.Conclusion: These results provide theoretical basis and convenient methods for rapid detection and control of viruses on cigar and flue-cured tobacco.


Author(s):  
Katarzyna Trzmiel

AbstractBrome mosaic virus (BMV) and cocksfoot mottle virus (CfMV) are pathogens of grass species including all economically important cereals. Both viruses have been identified in Poland therefore they create a potential risk to cereal crops. In this study, a duplex—reverse transcription—polymerase chain reaction (duplex-RT-PCR) was developed and optimized for simultaneous detection and differentiation of BMV and CfMV as well as for confirmation of their co-infection. Selected primers CfMVdiag-F/CfMVdiag-R and BMV2-F/BMV2-R amplified 390 bp and 798 bp RT-PCR products within coat protein (CP) region of CfMV and replicase gene of BMV, respectively. Duplex-RT-PCR was successfully applied for the detection of CfMV-P1 and different Polish BMV isolates. Moreover, one sample was found to be co-infected with BMV-ML1 and CfMV-ML1 isolates. The specificity of generated RT-PCR products was verified by sequencing. Duplex-RT-PCR, like conventional RT-PCR, was able to detect two viruses occurring in plant tissues in very low concentration (as low as 4.5 pg/µL of total RNA). In contrast to existing methods, newly developed technique offers a significant time and cost-saving advantage. In conclusion, duplex-RT-PCR is a useful tool which can be implemented by phytosanitary services to rapid detection and differentiation of BMV and CfMV.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1589-1589 ◽  
Author(s):  
F.-F. Zhao ◽  
D.-H. Xi ◽  
J. Liu ◽  
X.-G. Deng ◽  
H.-H. Lin

Chilli veinal mottle virus (ChiVMV), a potyvirus, is widespread over the world. In China, it was first reported in chili pepper (Capsicum annuum) in Hainan Province (south China) in 2006 (2). Subsequently, it was reported in tobacco (Nicotiana tabacum) in Yunnan Province (southwest China) in 2011 (1). Sichuan Province is one of the largest vegetable producing areas of China. In May 2012, tomatoes with leaves displaying virus-infected symptoms like mottling, mosaic, narrowing, or curling were observed in several fields of Chengdu, eastern Sichuan Province, southwest China. Of the 20 fields we investigated, four fields with 90% tomato plants were infected. During 2012 and 2013, six samples were collected from symptomatic tomato leaves based on different symptoms and locations. All six samples were assayed by western blotting using polyclonal antisera (Cucumber mosaic virus [CMV], Tobacco mosaic virus [TMV]) obtained from Agdia (Elkhart) and one antiserum to ChiVMV obtained from Yunnan Academy of Agricultural Science (China). Two samples from Pengzhou and one sample from Shuangliu exhibiting mosaic leaves were positive for TMV, one sample from Pixian exhibiting narrowing leaves was positive for CMV, and the other two samples from Shuangliu exhibiting mottle and leaf distortion were positive for ChiVMV. Total RNAs was extracted from all six samples and healthy tomato leaves using Trizol reagent (Invitrogen), First-strand cDNA synthesis primed with oligo(dT) by SuperScript III Reverse Transcriptase (Invitrogen). RT-PCR was performed using primer pairs ChiVMV-CP F (5′-GCAGGAGAGAGTGTTGATGCTG-3′) and ChiVMV–CP R (5′-(T)16AACGCCAACTATTG-3′), which were designed to direct the amplification of the entire capsid protein (CP) gene and 3′ untranslated region (3′-UTR) of ChiVMV (GenBank Accession No. KC711055). The expected 1,166-bp DNA fragment was amplified from the two tomato samples from Shuangliu that were positive for ChiVMV in the western blot tests, but not from the others. The obtained fragments were purified and cloned into the PMD18-T vector (TaKaRa) and sequenced. The sequencing results showed that the two ChiVMV isolates from tomato in Shuangliu were identical (KF738253). Nucleotide BLAST analysis revealed that this ChiVMV isolate shared ~84 to 99% nucleotide identities with other ChiVMV isolates available in GenBank (KC711055 to KF220408). To fulfill Koch's postulates, we isolated this virus by three cycle single lesion isolation in N. tabacum, and mechanically inoculated it onto tomato leaves. The same mottle and leaf distortion symptoms in systemic leaves were observed. Subsequent RT-PCR, fragment clone, and sequence determination tests were repeated and the results were the same. All the evidence from these tests revealed that the two tomato plants were infected by ChiVMV. To our knowledge, this is the first report of ChiVMV naturally infecting tomato in China. It shows that ChiVMV is spreading in China and is naturally infecting a new solanaceous crop in the southwest area, and the spread of the virus may affect tomato crop yields in China. Thus, it is very important to seek an effective way to control this virus. References: (1) M. Ding et al. Plant Dis. 95:357, 2011. (2) J. Wang et al. Plant Dis. 90:377, 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 573-573 ◽  
Author(s):  
D. L. Ochoa-Martínez ◽  
J. Alfonsina-Hernández ◽  
J. Sánchez-Escudero ◽  
D. Rodríguez-Martínez ◽  
J. Vera-Graziano

Lettuce (Lactuca sativa) is a common consumed vegetable and a major source of income and nutrition for small farmers in Mexico. This crop is infected with at least nine viruses: Mirafiori lettuce big-vein virus (MiLBVV), Lettuce big-vein associated virus (LBVaV), both transmitted by the soil-borne fungus Olpidium brassicae; Tomato spotted wilt virus (TSWV), Tomato chlorotic spot virus (TCSV), Groundnut ringspot virus (GRSV), Lettuce mottle virus (LMoV), Cucumber mosaic virus (CMV), Bidens mosaic virus (BiMV), and Lettuce mosaic virus (LMV) (1). From March to May 2012, a disease on lettuce was observed in the south region of Mexico City displaying mild to severe mosaic, leaf deformation, reduced growth, slight thickening of the main vein, and plant death. At the beginning of the epidemic there were just a few plants with visible symptoms and 7 days later the entire crop was affected, causing a loss of 93% of the plants. It was estimated by counting the number of severely affected or dead plants in three plots. No thrips, aphids, or whiteflies were observed in the crop during this time. Twenty plants with similar symptoms were collected and tested by RT-PCR using the primers LBVaVF 5′-AACACTATGGGCATCCACAT-3′ and LBVaVR 5′-GCATGTCAGCAATCAGAGGA-3′ specific for the coat protein gene of LBVaV, amplifying a 322-bp fragment. Primers CP829F 5′-CCWACTTCATCAGTTGAGCGCTG-3′ and CP1418R 5′-TATCAGCTCCCTACACTATCCTCGC-3′ were used to detect MiLBVV (2). No amplification was obtained for MiLBVaV in any plants tested. PCR products of approximately 300 bp were obtained from four out of 20 symptomatic lettuce samples tested for LBVaV, but not from healthy plant and water controls. These results suggest the presence of another virus in symptomatic lettuce plants. Amplicons were gel-purified and sequenced using LBVaVF and LBVaVR primers. A consensus sequence was generated using the Bioedit v. 5 program. Both sequences of these Mexican lettuce isolates were 100% identical (Accession Nos. KC776266.1 and KC776267.1) and had identities between 94 and 99% to all sequences of LBVaV available in GenBank. Additionally, when alignments were made using ClustalW, these sequences showed identities of 99.7% to Almeria-Spanish isolate (Accession No. AY581686.1); 99.4% to Granada-Spanish isolate (AY581689.1); 99.1% to Dutch isolate (JN710441.1), Iranian isolate (JN400921.1), Australian isolate (GU220725.1), Brazilian isolate (DQ530354.1), England isolate (AY581690.1), and American isolate (AY496053.1); 96.2% to Australian isolate (GU220722.1); 96.3% to Japanese isolate (AB190527.1); and 92.8% to Murcia-Spanish isolate (AY581691.1). Twenty lettuce plants were mechanically inoculated with leaf tissue taken from the four plants collected in the field and tested positive for LBVaV by RT-PCR; 12 days after inoculation, mosaic symptoms were observed in all inoculated plants and six of them were analyzed individually by RT-PCR obtaining a fragment of the expected size. To our knowledge, this is the first report of LBVaV infecting lettuce in Mexico. Further surveys and monitoring of LBVaV incidence and distribution in the region, vector competence of olpidium species, and impact on the crop quality are in progress. References: (1) P. M. Agenor et al. Plant Viruses 2:35, 2008. (2) R. J. Hayes et al. Plant Dis. 90:233, 2006.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 295-295 ◽  
Author(s):  
W. M. Wintermantel ◽  
E. T. Natwick

Basil (Ocimum basilicum L.) plants collected from three fields in Imperial County, CA in May, 2011 were found to be exhibiting yellowing, chlorotic sectors and spots on leaves, resulting in unmarketable plants. Dodder (Cuscuta spp.) was present in one of the fields, but was not visibly associated with symptomatic plants. Total nucleic acid was extracted from four symptomatic and three asymptomatic basil plants, as well as from the dodder plant with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Nucleic acid extracts were tested by reverse transcription (RT)-PCR for the presence of Alfalfa mosaic virus (AMV) using primers designed to amplify a 350-nt region of the AMV coat protein gene (3). RT-PCR produced bands of the expected size in extracts from all symptomatic plants and the dodder sample. No amplification was obtained from symptomless plants. A 350-nt band amplified from one plant was gel-extracted, sequenced (TACGen, Richmond, CA), and confirmed to be AMV by comparison to sequences available in GenBank (Accession No. K02703). Although serological tests on an initial basil sample were negative for AMV by ELISA using antiserum produced against AMV by R. Larsen, USDA-ARS, Prosser, WA (unpublished), AMV was confirmed by ELISA and RT-PCR in symptomatic Nicotiana benthamiana, N. clevelandii, and Malva parviflora plants following mechanical transmission from basil source plants. The fields with AMV infections were located at opposite ends of the production region from one another, indicating widespread dispersal of AMV in the region. All AMV positive plants were adjacent to alfalfa. Two additional basil plantings in shade houses open to the outside environment did not have AMV symptomatic plants and were also confirmed negative by RT-PCR, but these plantings were at the extreme north end of Imperial Valley agriculture and well away from any alfalfa fields. At the time the basil plantations were sampled for AMV, no aphids were found in any plantations, but during the several weeks prior to finding the AMV-positive plants, cowpea aphid, Aphis craccivora Koch; pea aphid, Acyrthosiphon pisum Harris; blue alfalfa aphid, Acyrthosiphon kondoi Shinji; and spotted alfalfa aphid, Therioaphis maculata Buckton were colonizing Imperial Valley alfalfa fields, producing winged adults. AMV is transmitted by at least 14 aphid species (1), and most aphid populations increase during the late spring in this important desert agricultural region. The acquisition of AMV by dodder suggests the parasitic plant may serve as a vector of AMV within basil fields, although further study will be necessary for clarification. Significant acreage of basil is grown in the Imperial Valley. This acreage is surrounded by extensive and increasing alfalfa production totaling 55,442 ha (137,000 acres) in Imperial County and representing a 21% increase in acreage over 2009 for the same region (2). To our knowledge, this is the first report of basil infected by AMV in California. The proximity of basil production to such a large alfalfa production region warrants the need for enhanced efforts at aphid management in basil production to reduce vector populations and reduce transmission to basil crops. References: (1) E. M. Jaspars and L. Bos. Alfalfa mosaic virus. No. 229 in: Descriptions of Plant Viruses. Commonw. Mycol. Inst./Assoc. Appl. Biol., Kew, England, 1980. (2) C. Valenzuela. Imperial County California Crop and Livestock Report, 2010. (3) H. Xu and J. Nie. Phytopathology 96:1237, 2006.


2013 ◽  
Vol 164 ◽  
pp. 88-93 ◽  
Author(s):  
Santosh Watpade ◽  
Baswaraj Raigond ◽  
K.K. Pramanick ◽  
Neeraj Sharma ◽  
Anil Handa ◽  
...  

2013 ◽  
Vol 53 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Przemysław Wieczorek ◽  
Aleksandra Obrępalska-Stęplowska

Abstract The tomato (Solanum lycopersicum L.) is cultivated all over the world and is a vegetable of significant economic importance. However, an increased production of the vegetable is directly connected with an elevated occurrence of pathogens limiting the production efficiency of the vegetable. Both, Tomato torrado virus and Pepino mosaic virus have been found to be serious disease factors. When not controlled, these viruses can significantly decrease tomato cultivation. In this article, we report a multiplex reverse transcription-polymerase chain reaction (RT-PCR) protocol for simultaneous detection of both, Tomato torrado virus (ToTV) and Pepino mosaic virus (PepMV) in virus infected plants. The assay was designed to specifically amplify the conserved regions of genomic ribonucleic acid (RNA) of both viruses. Moreover, the glycerandehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control of amplification to exclude false-negative assay results. High-resolution melt analysis of generated RT-PCR products was additionally performed to increase sensitivity and double-check the specificity of the reaction without the need of subsequent complementary deoxyribonucleic acid (cDNA) sequencing


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7539
Author(s):  
Xinyue Bi ◽  
Xiaodong Li ◽  
Haibo Yu ◽  
Mengnan An ◽  
Rui Li ◽  
...  

Watermelon (Citrullus lanatus Thunb.) is considered as a popular and nutritious fruit crop worldwide. Watermelon blood flesh disease caused by Cucumber green mottle mosaic virus (CGMMV) and bacterial fruit blotch caused by Acidovorax citrulli, are two major quarantine diseases of watermelon and result in considerable losses to global watermelon production. In this study, a multiplex reverse-transcription polymerase chain reaction (RT-PCR) method was developed for simultaneous detection of CGMMV and A. citrulli in both watermelon leaves and seeds. Two pairs of specific primers were designed based on the conserved sequences of the genomic RNA of CGMMV and the internal transcribed spacer of A. citrulli, respectively. Transcriptional elongation factor-1α from watermelon was added as an internal reference gene to prevent false negatives. No cross-reactivity was detected with other viral or bacterial pathogens infecting watermelon. Moreover, the multiplex RT-PCR showed high sensitivity and could simultaneously detect CGMMV and A. citrulli as little as 102 copies of plasmid DNA. This method was successfully applied to test field-collected watermelon leaves and stored seeds of cucurbitaceous crops. These results suggested that the developed multiplex RT-PCR technique is a rapid, efficient, and sensitive method for simultaneous detection of CGMMV and A. citrulli, providing technical support for monitoring, predicting, and preventing these two quarantine diseases. To our knowledge, this is the first report on simultaneous detection of a virus and a bacterium by multiplex RT-PCR in watermelon.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 761-761 ◽  
Author(s):  
M. I. Font ◽  
M. C. Córdoba-Sellés ◽  
M. C. Cebrián ◽  
J. A. Herrera-Vásquez ◽  
A. Alfaro-Fernández ◽  
...  

During the springs of 2007 and 2008, leaf deformations as well as symptoms of mild green and chlorotic mosaic were observed on pepper (Capsicum annuum) plants grown in Monastir (northwest Tunisia) and Kebili (southeast Tunisia). With the support of projects A/5269/06 and A/8584/07 from the Spanish Agency for International Cooperation (AECI), symptomatic leaf samples were analyzed by transmission electron microscopy (TEM) of leaf-dip preparations. Typical tobamovirus-like particles (rigid rods ≈300 nm long) were observed in crude plant extracts. According to literature, at least six tobamoviruses infect peppers: Paprika mild mottle virus (PaMMV); Pepper mild mottle virus (PMMoV); Ribgrass mosaic virus (RMV); Tobacco mild green mosaic virus (TMGMV); Tobacco mosaic virus (TMV); and Tomato mosaic virus (ToMV) (1). Extracts from six symptomatic plants from Monastir and four from Kebili fields tested negative for ToMV, TMV, and PMMoV and tested positive for TMGMV by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany). To confirm the positive TMGMV results, total RNAs from 10 symptomatic plants that tested positive by ELISA were extracted and analyzed by reverse transcription (RT)-PCR using primers designed to specifically amplify a region of the coat protein gene (CP) of TMGMV (2). The 524-bp TMGMV-CP specific DNA fragment was amplified from all samples, but was not amplified from healthy plants or the sterile water used with negative controls. RT-PCR products were purified and directly sequenced. BLAST analysis of the obtained sequence (GenBank No. EU770626) showed 99 to 98% nucleotide identity with TMGMV isolates PAN-1, DSMZ PV-0113, TMGMV-Pt, and VZ1 (GenBank Nos. EU934035, EF469769, AM262165, and DQ460731, respectively) and less than 69% with PaMMV and PMMoV isolates (GenBank Nos. X72586 and AF103777, respectively). Two TMGMV-positive, singly, infected symptomatic pepper plants collected from Monastir and Kebili were used in mechanical transmissions to new pepper and tomato plants. Inoculated pepper plants exhibited mild chlorosis symptoms and tested positive for TMGMV only; however, inoculated tomato plants cv. Marmande were asymptomatic and tested negative as expected for TMGMV infection (1). To our knowledge, although C. annuum has been shown as a natural host for TMGMV (2), this is the first report of TMGMV in Tunisia. Reference: (1) A. A. Brunt et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. Online publication, 1996. (2) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1384-1384 ◽  
Author(s):  
R. A. C. Jones ◽  
D. Real ◽  
S. J. Vincent ◽  
B. E. Gajda ◽  
B. A. Coutts

Tedera (Bituminaria bituminosa (L.) C.H. Stirton vars albomarginata and crassiuscula) is being established as a perennial pasture legume in southwest Australia because of its drought tolerance and ability to persist well during the dry summer and autumn period. Calico (bright yellow mosaic) leaf symptoms occurred on occasional tedera plants growing in genetic evaluation plots containing spaced plants at Newdegate in 2007 and Buntine in 2010. Alfalfa mosaic virus (AlMV) infection was suspected as it often causes calico in infected plants (1,2) and infects perennial pasture legumes in local pastures (1,3). Because AlMV frequently infects Medicago sativa (alfalfa) in Australia and its seed stocks are commonly infected (1,3), M. sativa buffer rows were likely sources for spread by aphids to healthy tedera plants. When leaf samples from plants with typical calico symptoms from Newdegate (2007) and Buntine (2010) were tested by ELISA using poyclonal antisera to AlMV, Bean yellow mosaic virus (BYMV) and Cucumber mosaic virus (CMV), only AlMV was detected. When leaf samples from 864 asymptomatic spaced plants belonging to 34 tedera accessions growing at Newdegate and Mount Barker in 2010 were tested by ELISA, no AlMV, BYMV, or CMV were detected, despite presence of M. sativa buffer rows. A culture of AlMV isolate EW was maintained by serial planting of infected seed of M. polymorpha L. (burr medic) and selecting seed-infected seedlings (1,3). Ten plants each of 61 accessions from the local tedera breeding program were grown at 20°C in an insect-proof air conditioned glasshouse. They were inoculated by rubbing leaves with infective sap containing AlMV-EW or healthy sap (five plants each) using Celite abrasive. Inoculations were always done two to three times to the same plants. When both inoculated and tip leaf samples from each plant were tested by ELISA, AlMV was detected in 52 of 305 AlMV-inoculated plants belonging to 36 of 61 accessions. Inoculated leaves developed local necrotic or chlorotic spots or blotches, or symptomless infection. Systemic invasion was detected in 20 plants from 12 accessions. Koch's postulates were fulfilled in 12 plants from nine accessions (1 to 2 of 5 plants each), obvious calico symptoms developing in uninoculated leaves, and AlMV being detected in symptomatic samples by ELISA, inoculation of sap to diagnostic indicator hosts (2) and RT-PCR with AlMV CP gene primers. Direct RT-PCR products were sequenced and lodged in GenBank. When complete nucleotide CP sequences (666 nt) of two isolates from symptomatic tedera samples and two from alfalfa (Aq-JX112758, Hu-JX112759) were compared with that of AlMV-EW, those from tedera and EW were identical (JX112757) but had 99.1 to 99.2% identities to the alfalfa isolates. JX112757 had 99.4% identity with Italian tomato isolate Y09110. Systemically infected tedera foliage sometimes also developed vein clearing, mosaic, necrotic spotting, leaf deformation, leaf downcurling, or chlorosis. Later-formed leaves sometimes recovered, but plant growth was often stunted. No infection was detected in the 305 plants inoculated with healthy sap. To our knowledge, this is the first report of AlMV infecting tedera in Australia or elsewhere. References: (1) B. A. Coutts and R. A. C. Jones. Ann. Appl. Biol. 140:37, 2002. (2) E. M. J. Jaspars and L. Bos. Association of Applied Biologists, Descriptions of Plant Viruses No. 229, 1980. (3) R. A. C. Jones. Aust. J. Agric. Res. 55:757, 2004.


Sign in / Sign up

Export Citation Format

Share Document