scholarly journals Sustainable Alternative Ceiling Boards using Palm Kernel Shell (PKS) and Balanite Shell (BS)

Author(s):  
Ichetaonye S. I. ◽  
Ajekwene K. K. ◽  
Ulaeto S. B ◽  
Yibowei M ◽  
Imran khan ◽  
...  

Abstract This paper presents an experimental study to investigate the sustainable alternativeceiling boards using Palm Kernel Shell (PKS) and Balanite Shell (BS). The ceiling boards were prepared by mixing (BS/binder, PKS/binder and PKS/BS/binder) at different ratios of (20/80, 40/60, 60/40 and 80/20) and represented as samples (A1, A2, A3 and A4), (B1, B2, B3 and B4) and (C1, C2, C3 and C4) respectively. The samples werecast by flat press process in rectangular sheet shape mould of 187mm x 125 mm x 3mm. The samples were cut into specimen sizes of 30 mm x 40 mm and tested for dry shrinkage, water absorption, apparent porosity, bulk density,flaking, and hardness properties. Morphology of the samples were examined using SEM. Results of the analysis show that irrespective of the filler loadings the properties of PKS / binder particularly at 20/80 ratio (B1) displayed better dry shrinkage of 3.7 %; water absorption of 12.4 %; apparent porosity of 15 %; bulk density of 2.3 g/cm3; flaking of 0.05g and hardness of 57.6 Hv which approximates those of the conventional specimen (Control) with a more better physical properties compared to BS / binder at 20/80 ratio (A1) with dry shrinkage of 6.1 %; water absorption of 33 %; apparent porosity of 35 %; bulk density 1.2 g/cm3; flaking of 0.36g; hardness of 26.2 Hv and PKS / BS / binder at 20/80 ratio (C1)with dry shrinkage of 9.8 %; water absorption of 30 %; apparent porosity of 32 %; bulk density 1.4 g/cm3; flaking of 0.1g; hardness of 36.7 Hv. These results therefore suggest that PKS could be used as a sustainable alternative in the production of ceiling boards.

2021 ◽  
Author(s):  
Simon Ikechukwu Ichetaonye ◽  
Kingsley Kema Ajekwene ◽  
Sarah Bill Ulaeto ◽  
Moses Ebiowei Yibowei ◽  
Ugonna Kingsley Ugo ◽  
...  

Abstract This study presents the potential of modified Palm Kernel Shell (MPKS) particles in the production of blocks as an alternative building material using cement or clay as binders. Several studies on Palm Kernel Shell (PKS) as a blend with other natural fibres/fillers found that due to its hydrophilic nature, it has low physical and mechanical capabilities in comparison to MPKS, making it less compatible with any polymeric matrix. Experimental tests were conducted to determine the physicomechanical attributes of MPKS/Cement and MPKS/Clay blocks, including characterization of the cement and clay using Atomic Absorption Spectroscopy (AAS), as well as moisture content, water absorption, hardness, apparent porosity, bulk density, compressive strength, and flake. The morphology of the samples was determined using Scanning Electron Microscope (SEM). Results show that MPKS/Cement block samples exhibit superior physicomechanical and morphological properties compared to MPKS/Clay. The MPKS/Cement block sample moisture content ranged between 4.76 – 9.94%. The 80/20 MPKS/Cement sample recorded the most water absorption at 49.5%, and a microhardness value of 82.3 Hv for the 20/80 sample. The MPKS/Clay samples showed higher values of apparent porosity but recorded the least bulk density in the 80/20 samples. The 20/80 MPKS/Cement and MPKS/Clay samples showed the best compressive strength at 63.72 and 50.3 N/mm2 respectively, while 80/20 for both cement and clay displayed very weak compressive strengths. The ratio 20/80 of MPKS/Cement is observed to be the optimum ratio where better properties of the composites were obtained. For the structure industry's long-term viability, MPKS' superior mechanical properties as an aggregate in block manufacturing make it an asset material as an alternative for some high-cost construction resources such as sand.


2018 ◽  
Vol 32 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Jagadeesh Bhattarai ◽  
Dol Bahadur Ghale ◽  
Yagya Prasad Chapagain ◽  
Narendra Bahadur Bohara ◽  
Nijan Duwal

Physical and mechanical properties of seven ancient clay brick samples of Kathmandu valley consisting of quartz, feldspars, spinel, margarite, muscovite type of mica mineral and hematite were studied using ASTM standards. All the brick samples used in this study have the water absorption, apparent porosity and bulk density in the range of 10-28 percent, 17-33 percent and 1.2-1.8 g/cm3, respectively, while the compressive strength of all the brick samples is found to be in the range of 5-23 MPa. The bulk density of the tile samples is found to be increased with decreasing the water absorption and apparent porosity. The compressive strength of all the clay brick samples can be correlated with their physical properties. Consequently, durability of the ancient bricks is directly influenced by their physical properties of water absorption, apparent porosity and bulk density.


Author(s):  
Reneta Nafu Yakum ◽  
Wannyuy Kingsly Mofor ◽  
Ngwe Nnoko Ngaaje

Increasing population levels, booming economy and rapid urbanization have greatly accelerated the municipal solid waste (MSW) in our country; in our cities (Bamenda, Buea, Douala, Yaoundé etc.), poor management of solid waste constitutes an urgent problem: flood, deterioration of the urban environment in the form of air, water, and land pollution. Options like recycling and material recovery for subsequent re-use present enormous opportunities for waste management with economic and ecological benefits, wastes as well as plastic and palm nut shell have not yet been recycled satisfactorily; the performances of palm nut shell-plastic composites of 30% palm kernel shell with particle sizes varying from 1mm to 5mm and 70% of polyethylene were used to produce different samples The effects of palm kernel shell particles’ size on mechanical and physical properties of the new composite were studied by the help of different mechanical (flexural and compressive test) and physical tests (density and water absorption). Results showed a better interaction of polyethylene and palm kernel shell particles at 1mm sieve with compressive stress and water absorption higher at 1mm, ultimate flexural stress and the young’s modulus of the material increased as the particle size of the palm kernel shell increased, relatively higher density were obtained at 3mm of the palm kernel shell (PKS) size.    


2012 ◽  
Vol 490-495 ◽  
pp. 1024-1028
Author(s):  
Hong Mei Liu ◽  
Heng Liang Yang ◽  
Wei Min Hong ◽  
Xiao Yan Lu

The study on the physical properties of fired perforated brick in Nantong mainly from water absorption, bulk density and compressive strength has been accomplished. The physical properties of fired perforated brick which were manufactured under the different RH (relative air humidity) have been compared, and the analysis of the RH (relative air humidity) influence on the physical properties of fired perforated brick has been concluded. The results showed that, the water absorption and compressive strength of products which have been produced under the condition that the RH was about 50% were higher, but the bulk density was lower.


2021 ◽  
Vol 49 (1) ◽  
pp. 23-30
Author(s):  
Asotah Wisdom ◽  
Udochukwu Mark ◽  
Elakhame Zeberu ◽  
Abraham Adeleke

Optimisation of the physical properties of rice husk ash (RHA) in ceramic materials was carried out using Response Surface Methodology. The independent variables, namely the firing temperature and residue content, were statistically combined in a Central Composite Design with the effects on water absorption, linear shrinkage, bulk density, apparent porosity and apparent specific gravity determined. Physical and microstructural analyses were carried out to obtain information on the processes that occurred within the ceramic materials. The results obtained were analysed to determine the optimum physical properties of the ceramic materials within the range investigated. The residue content had a significant influence (at 95% confidence level) on the bulk density, water absorption, apparent porosity and apparent specific gravity but not on the linear shrinkage. The firing temperature had a more significant effect on the linear shrinkage than on the residue content, so that when elevated it contributed to an increase in linear shrinkage. The optimum residue content and firing temperature to enhance physical properties within the range investigated were 5.85% RHA and 1029.64°celsius, respectively. These optimal conditions are expected to produce a ceramic material with a bulk density, linear shrinkage, apparent porosity, water absorption and apparent specific gravity of 1.64 g/cm3, 0.29%, 0.29 g/cm3, 18.26% and 2.11, respectively with a composite desirability of 100%.


2014 ◽  
Vol 3 (6) ◽  
pp. 107 ◽  
Author(s):  
Sushil K. Singh ◽  
K. Muthukumarappan

<p>Nutritionally balanced ingredient blends for catla (<em>Catla catla</em>), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, fish meal, vitamin, and mineral mix. A central composite rotatable design (CCRD) and  response surface methodology (RSM) was used to investigate the significance of independent and interaction effects of the extrusion process variables on the extrudates physical properties namely pellet durability index, bulk density, water absorption and solubility indices and expansion ratio. Quadratic polynomial regression equations were developed to correlate the product responses and process variables as well as to obtain the response surfaces plots. The independent variables had significant (<em>P </em>&lt; 0.05) effects on physical properties of extrudates: (i) higher soy white flakes content increased the pellet durability index and water absorption index, but decreased the water solubility index, (ii) higher temperature decreased pellet durability index, bulk density and water solubility index, (iii) increased L/D ratio from 3.33 to 7.25 increased the pellet durability index, expansion ratio but decreased the bulk density of the extrudates.</p>


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2011 ◽  
Vol 399-401 ◽  
pp. 834-837
Author(s):  
Chun Hui Cao ◽  
Jun Cong Wei ◽  
Jian Kun Huang ◽  
Jun Bo Tu

MgAl2O4-SiC composites were prepared by using MgAl2O4 and SiC powder as main starting materials, being pressed to cylindrical specimens of Φ30mm×30mm at 200 MPa and heated respectively at 1400°C and 1500°C for 3 hours in air atmosphere. The room temperature physical properties of sintered samples were tested according to related national standards. The phase compositions were analyzed by XRD. The microstructure of the fracture of the samples was observed by SEM. The results showed that MgAl2O4-SiC materials could sintered well in air atmosphere. The mechanism is that SiC was oxidized to form active SiO2, which reacted with MgAl2O4 to produce liquid cordierite promoting the sintering of the materials. The sinterability of MgAl2O4-SiC materials was overall improved with increasing the sintering temperature. When the content of SiC of MgAl2O4-SiC materials was 10%, the cold crushing strength and bulk density of the samples reached maximums and apparent porosity reached a minimum; the content of SiC was more than 10%, the sinterability of samples deteriorated.


Sign in / Sign up

Export Citation Format

Share Document