scholarly journals Symmetry and relative equilibria of a  bicycle system moving on a revolution surface

Author(s):  
Jiaming Xiong ◽  
Caishan Liu

Abstract Finding the relative equilibria and analyzing their stabilities are of great significance to revealing the intrinsic properties of mechanical systems and developing effective controller. In this paper, we study the symmetry and relative equilibria of a bicycle system moving on a revolution surface. We note that the symmetry group of the bicycle is a three-dimensional Abelian Lie group, and the rolling condition of the two wheels produces four time-invariant first-order linear constraints to the bicycle system. Therefore, we can classify the bicycle dynamics as a general Voronets system whose Lagrangian and constraint distribution are kept invariant under the action of the symmetry group. Applying the Voronets equations to the bicycle dynamics, we obtain a seven-dimensional reduced dynamic system on the reduced constraint space. This system takes time-reversal and lateral symmetries, and has two kinds of relative equilibria: the static equilibria and the dynamic equilibria. Further theoretical analysis shows that both kinds of relative equilibria form one-parameter solution families, and their Jacobian matrices take some specific properties. We then show that a static equilibrium cannot be stable unless all the eigenvalues of the Jacobian matrix are located at the imaginary axis of the complex plane. The stability of the dynamic equilibria is studied by limiting the reduced dynamic system to an invariant manifold, which is established based on the conservation of energy of the system. We prove in a strict mathematical sense that the dynamic equilibria may be Lyapunov stable, but cannot be asymptotically stable. Finally, we employ symbolic computation to carry out numerical simulations in conjunction with the benchmark parameters of a Whipple bicycle. How the revolution surface affects the relative equilibria and their stabilities is then investigated through our numerical simulations.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


2015 ◽  
Vol 25 (3) ◽  
pp. 1-5 ◽  
Author(s):  
Philipp A. C. Kruger ◽  
Victor M. R. Zermeno ◽  
Makoto Takayasu ◽  
Francesco Grilli

2004 ◽  
Vol 127 (3) ◽  
pp. 400-415 ◽  
Author(s):  
Amador M. Guzmán ◽  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.


2016 ◽  
Vol 46 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Cesar B. Rocha ◽  
William R. Young ◽  
Ian Grooms

AbstractThis study investigates the representation of solutions of the three-dimensional quasigeostrophic (QG) equations using Galerkin series with standard vertical modes, with particular attention to the incorporation of active surface buoyancy dynamics. This study extends two existing Galerkin approaches (A and B) and develops a new Galerkin approximation (C). Approximation A, due to Flierl, represents the streamfunction as a truncated Galerkin series and defines the potential vorticity (PV) that satisfies the inversion problem exactly. Approximation B, due to Tulloch and Smith, represents the PV as a truncated Galerkin series and calculates the streamfunction that satisfies the inversion problem exactly. Approximation C, the true Galerkin approximation for the QG equations, represents both streamfunction and PV as truncated Galerkin series but does not satisfy the inversion equation exactly. The three approximations are fundamentally different unless the boundaries are isopycnal surfaces. The authors discuss the advantages and limitations of approximations A, B, and C in terms of mathematical rigor and conservation laws and illustrate their relative efficiency by solving linear stability problems with nonzero surface buoyancy. With moderate number of modes, B and C have superior accuracy than A at high wavenumbers. Because B lacks the conservation of energy, this study recommends approximation C for constructing solutions to the surface active QG equations using the Galerkin series with standard vertical modes.


Sign in / Sign up

Export Citation Format

Share Document