scholarly journals Excitotoxicity and genetics of amyotrophic lateral sclerosis: effects of intracellular calcium accumulation on proteins encoded by the major genes underlying the disease

Author(s):  
Giovanni DE MARCO ◽  
Annarosa Lomartire ◽  
Umberto Manera ◽  
Antonio Canosa ◽  
Maurizio Grassano ◽  
...  

Abstract The aetiology of Amyotrophic Lateral Sclerosis (ALS), a fatal and incurable disease caused by motor neuron degeneration, is still poorly understood. The discovery of genetic forms of ALS helped to shed light on the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is one of the processes strongly suspected to play a role in motor neuron degeneration in ALS. This process consists in neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and excitotoxicity. In detail, the profile of eight proteins (TDP-43, C9ORF72, p62/SQSTM1, matrin3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a significant decrease in the levels of TDP-43, C9ORF72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in p62/SQSTM1. These events are associated to the proteolytic action of two proteases, calpains and caspases, as well as to the activation of autophagy, a process responsible for the degradation and recycling of cytoplasmic components. Interestingly, Ca2+ appears to both favour and hinder autophagy. The discovery of when Ca2+ levels become toxic for the cell, as well as understanding why the physiological processes of calpain proteolysis and autophagy become pathological, may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.

2021 ◽  
Vol 22 (8) ◽  
pp. 3875
Author(s):  
Emma Källstig ◽  
Brian D. McCabe ◽  
Bernard L. Schneider

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-kB. Besides its connection to inflammation, NF-kB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-kB activation. Collectively, this has led many to hypothesize that NF-kB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-kB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Giovanni De Marco ◽  
Annarosa Lomartire ◽  
Umberto Manera ◽  
Antonio Canosa ◽  
Maurizio Grassano ◽  
...  

AbstractThe aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.


Autophagy ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 412-425 ◽  
Author(s):  
Xiaojie Zhang ◽  
Liang Li ◽  
Sheng Chen ◽  
Dehua Yang ◽  
Yi Wang ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e46185 ◽  
Author(s):  
Ryu Katsumata ◽  
Shinsuke Ishigaki ◽  
Masahisa Katsuno ◽  
Kaori Kawai ◽  
Jun Sone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document