scholarly journals The Links between ALS and NF-kB

2021 ◽  
Vol 22 (8) ◽  
pp. 3875
Author(s):  
Emma Källstig ◽  
Brian D. McCabe ◽  
Bernard L. Schneider

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-kB. Besides its connection to inflammation, NF-kB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-kB activation. Collectively, this has led many to hypothesize that NF-kB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-kB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3804
Author(s):  
Polina S. Goncharova ◽  
Tatiana K. Davydova ◽  
Tatiana E. Popova ◽  
Maxim A. Novitsky ◽  
Marina M. Petrova ◽  
...  

Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. Methods: We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010–2020. Discussion: We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. Conclusion: The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.


2021 ◽  
Author(s):  
Giovanni DE MARCO ◽  
Annarosa Lomartire ◽  
Umberto Manera ◽  
Antonio Canosa ◽  
Maurizio Grassano ◽  
...  

Abstract The aetiology of Amyotrophic Lateral Sclerosis (ALS), a fatal and incurable disease caused by motor neuron degeneration, is still poorly understood. The discovery of genetic forms of ALS helped to shed light on the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is one of the processes strongly suspected to play a role in motor neuron degeneration in ALS. This process consists in neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and excitotoxicity. In detail, the profile of eight proteins (TDP-43, C9ORF72, p62/SQSTM1, matrin3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a significant decrease in the levels of TDP-43, C9ORF72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in p62/SQSTM1. These events are associated to the proteolytic action of two proteases, calpains and caspases, as well as to the activation of autophagy, a process responsible for the degradation and recycling of cytoplasmic components. Interestingly, Ca2+ appears to both favour and hinder autophagy. The discovery of when Ca2+ levels become toxic for the cell, as well as understanding why the physiological processes of calpain proteolysis and autophagy become pathological, may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.


Autophagy ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 412-425 ◽  
Author(s):  
Xiaojie Zhang ◽  
Liang Li ◽  
Sheng Chen ◽  
Dehua Yang ◽  
Yi Wang ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e46185 ◽  
Author(s):  
Ryu Katsumata ◽  
Shinsuke Ishigaki ◽  
Masahisa Katsuno ◽  
Kaori Kawai ◽  
Jun Sone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document