scholarly journals Notch signaling in mouse blastocyst development and hatching

2020 ◽  
Author(s):  
Mariana Batista ◽  
Patrícia Diniz ◽  
Ana Torres ◽  
Daniel Murta ◽  
Luís Lopes-da-Costa ◽  
...  

Abstract Background Mammalian early embryo development requires a well-orchestrated interplay of cell signaling pathways. Notch is a major regulatory pathway involved in cell-fate determination in embryonic and adult scenarios. However, the role of Notch in embryonic pre-implantation development is controversial. In particular, Notch role on blastocyst development and hatching remains elusive, and a complete picture of the transcription and expression patterns of Notch components during this time-period is not available.Results This study provided a comprehensive view on the dynamics of individual embryo gene transcription and protein expression patterns of Notch components (receptors Notch1-4; ligands Dll1 and Dll4, Jagged1-2; and effectors Hes1-2), and their relationship with transcription of gene markers of pluripotency and differentiation (Sox2, Oct4, Klf4, Cdx2) during mouse blastocyst development and hatching. Transcription of Notch1-2, Jagged1-2 and Hes1 was highly prevalent and dynamic along stages of development, whereas transcription of Notch3-4, Dll4 and Hes2 had a low prevalence among embryos. Transcription levels of Notch1, Notch2, Jagged2 and Hes1 correlated with each other and with those of pluripotency and differentiation genes. Gene transcription was associated to protein expression, except for Jagged2, where high transcription levels in all embryos were not translated into protein. Presence of Notch signaling activity was confirmed through nuclear NICD and Hes1 detection, and downregulation of Hes1 transcription following canonical signaling blockade with DAPT. In vitro embryo culture supplementation with Jagged1 had no effect on embryo developmental kinetics. In contrast, supplementation with Jagged2 abolished Jagged1 transcription, downregulated Cdx2 transcription and inhibited blastocyst hatching. Notch signaling blockade by DAPT downregulated transcription of Sox2, and retarded embryo hatching. Conclusion Transcription of Notch genes showed a dynamic pattern along blastocyst development and hatching. Data confirmed Notch signaling activity, and lead to the suggestion that Notch canonical signaling may be operating through Notch1, Notch3, Jagged1 and Hes1. Embryo culture supplementation with Jagged1 and Jagged2 unveiled a possible regulatory effect between Jagged1, Cdx2 and blastocyst hatching. Overall, results indicate that a deregulation in Notch signaling, either by its over or under-activation, affects blastocyst development and hatching.

2020 ◽  
Author(s):  
Mariana Batista ◽  
Patrícia Diniz ◽  
Ana Torres ◽  
Daniel Murta ◽  
Luís Lopes-da-Costa ◽  
...  

Abstract Background Mammalian early embryo development requires a well-orchestrated interplay of cell signaling pathways. Notch is a major regulatory pathway involved in cell-fate determination in embryonic and adult scenarios. However, the role of Notch in embryonic pre-implantation development is controversial. In particular, Notch role on blastocyst development and hatching remains elusive, and a complete picture of the transcription and expression patterns of Notch components during this time-period is not available.Results This study provided a comprehensive view on the dynamics of individual embryo gene transcription and protein expression patterns of Notch components (receptors Notch1-4; ligands Dll1 and Dll4, Jagged1-2; and effectors Hes1-2), and their relationship with transcription of gene markers of pluripotency and differentiation (Sox2, Oct4, Klf4, Cdx2) during mouse blastocyst development and hatching. Transcription of Notch1-2, Jagged1-2 and Hes1 was highly prevalent and dynamic along stages of development, whereas transcription of Notch3-4, Dll4 and Hes2 had a low prevalence among embryos. Transcription levels of Notch1, Notch2, Jagged2 and Hes1 correlated with each other and with those of pluripotency and differentiation genes. Gene transcription was associated to protein expression, except for Jagged2, where high transcription levels in all embryos were not translated into protein. Presence of Notch signaling activity was confirmed through nuclear NICD and Hes1 detection, and downregulation of Hes1 transcription following canonical signaling blockade with DAPT. In vitro embryo culture supplementation with Jagged1 had no effect on embryo developmental kinetics. In contrast, supplementation with Jagged2 abolished Jagged1 transcription, downregulated Cdx2 transcription and inhibited blastocyst hatching. Notch signaling blockade by DAPT downregulated transcription of Sox2, and retarded embryo hatching.Conclusion Transcription of Notch genes showed a dynamic pattern along blastocyst development and hatching. Data confirmed Notch signaling activity, and lead to the suggestion that Notch canonical signaling may be operating through Notch1, Notch3, Jagged1 and Hes1. Embryo culture supplementation with Jagged1 and Jagged2 unveiled a possible regulatory effect between Jagged1, Cdx2 and blastocyst hatching. Overall, results indicate that a deregulation in Notch signaling, either by its over or under-activation, affects blastocyst development and hatching.


2019 ◽  
Vol 39 (3) ◽  
pp. 372-382 ◽  
Author(s):  
Miaoxin Chen ◽  
Siew L Wong ◽  
Linda L Wu ◽  
Yasmyn E Gordon ◽  
Leonie K Heilbronn ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mariana R. Batista ◽  
Patrícia Diniz ◽  
Ana Torres ◽  
Daniel Murta ◽  
Luís Lopes-da-Costa ◽  
...  

Reproduction ◽  
2020 ◽  
Author(s):  
Madhulika Pathak ◽  
Vani Venkatappa ◽  
Surendra Sharma ◽  
Polani B. Seshagiri

Mammalian blastocyst hatching is critically an indispensable process for successful implantation. One of the major challenges in IVF clinics is to achieve superior embryonic development with intrinsically potent hatching-competent blastocyst. However, the molecular regulation of hatching phenomenon is poorly understood. In this study, we examined the expression and function of one of the cytokines, IL-1β during blastocyst hatching in the mouse. In particular, the expression of IL-1β (Interleukin-1β), IL-1ra (Interleukin-1 receptor antagonist) and their functional receptor IL-1rt1 (Interleukin 1 receptor type-1) in morulae, zona intact- and hatched- blastocysts was studied. Supplementation of IL-1β to cultured embryos accelerated blastocyst development with improved hatching (treated: 89.6 ± 3.6% vs untreated: 65.4 ± 4.1%). When embryos were treated with IL-1ra, blastocyst hatching was decreased (treated: 28.8 ± 3.1% vs untreated: 67.5 ± 3.8%). Moreover, IL-1β and IL-1ra influenced the expression of hatching enzymes viz., implantation serine proteases (ISP 1 and ISP 2). While IL-1β increased the embryonic mRNA expression of ISPs (ISP1: 2-4; ISP2: 9-11 fold), IL-1ra decreased expression. The protein localization studies revealed increased nuclear presence predominantly of ISP 2 in IL-1β treated blastocysts. This is the first report to show the functional significance of embryonic IL-1β in regulating hatching-associated proteases, particularly ISP2. These findings have implications in our understanding of molecular regulation of blastocyst hatching and implantation failure in other species including humans.


2019 ◽  
Author(s):  
Ji Pang ◽  
Liang Le ◽  
Yi Zhou ◽  
Qiang Hou ◽  
Marina Thexton ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeyang Wang ◽  
Zhi Lv ◽  
Qian Xu ◽  
Liping Sun ◽  
Yuan Yuan

Abstract Background Epstein-Barr virus-associated gastric cancer (EBVaGC) is the most common EBV-related malignancy. A comprehensive research for the protein expression patterns in EBVaGC established by high-throughput assay remains lacking. In the present study, the protein profile in EBVaGC tissue was explored and related functional analysis was performed. Methods Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (ISH) was applied to EBV detection in GC cases. Data-independent acquisition (DIA) mass spectrometry (MS) was performed for proteomics assay of EBVaGC. Functional analysis of identified proteins was conducted with bioinformatics methods. Immunohistochemistry (IHC) staining was employed to detect protein expression in tissue. Results The proteomics study for EBVaGC was conducted with 7 pairs of GC cases. A total of 137 differentially expressed proteins in EBV-positive GC group were identified compared with EBV-negative GC group. A PPI network was constructed for all of them, and several proteins with relatively high interaction degrees could be the hub genes in EBVaGC. Gene enrichment analysis showed they might be involved in the biological pathways related to energy and biochemical metabolism. Combined with GEO datasets, a highly associated protein (GBP5) with EBVaGC was screened out and validated with IHC staining. Further analyses demonstrated that GBP5 protein might be associated with clinicopathological parameters and EBV infection in GC. Conclusions The newly identified proteins with significant differences and potential central roles could be applied as diagnostic markers of EBVaGC. Our study would provide research clues for EBVaGC pathogenesis as well as novel targets for the molecular-targeted therapy of EBVaGC.


2015 ◽  
Vol 20 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Mohamed A. Adly ◽  
Hanan A. Assaf ◽  
Shaima’a F. Abdel-Rady ◽  
Nagwa Sayed Ahmed ◽  
Mahmoud Rezk Abdelwahed Hussein

Background: Vitiligo is an idiopathic skin disease, characterized by circumscribed white macules or patches on the skin due to loss of the functional melanocytes. Glial cell line–derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are distal members of the transforming growth factor-β superfamily. GDNF, produced by the basal cell keratinocytes, is involved in the migration and differentiation of the melanocytes from the neural crest to the epidermis. This study examines the hypothesis that expression of GDNF protein and its cognate receptor GFRα-1 protein is altered in vitiliginous skin. Patients and Methods: To test our hypothesis, we examined the expression patterns of these proteins in vitiliginous and corresponding healthy (control) skin biopsies (20 specimens each) using immunoperoxidase staining techniques. Results: We found variations between the vitiliginous skin and healthy skin. In healthy skin, the expression of GDNF and GFRα-1 proteins was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In contrast, weak expression of GDNF protein was observed in all epidermal layers of vitiliginous skin. GFRα-1 protein expression was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In both healthy skin and vitiliginous skin, the expression of GDNF and GFRα-1 proteins was strong in the adnexal structures. Conclusions: We report, for the first time, decreased expression of GDNF proteins in the epidermal keratinocytes of vitiliginous skin. Our findings suggest possible pathogenetic roles for these proteins in the development of vitiligo. The clinical ramifications of these observations mandate further investigations.


Sign in / Sign up

Export Citation Format

Share Document