Preparation and electrochemical properties of lead-steel layered composite electrode materials for adiponitrile production

Author(s):  
Yang Xu ◽  
Zhaohui Han ◽  
Peixian Zhu ◽  
Shenggang Zhou

Abstract In this paper, Pb-63%Sn alloy was selected as an intermediate layer to plate on Q235 steel by the hot dipping method, and then the hot-dipped steel and the lead plate were welded by roll-bonding technology to prepare the lead-steel layered composite electrode materials. Scanning electron microscopy (SEM), Energy dispersion spectrum (EDS) and X-ray diffraction (XRD) were used to characterize the interface morphology and phase composition of samples, and the interface formation mechanism was also discussed. The electrochemical properties of the lead-steel layered composite electrode under different rolling reduction ratio were studied by linear sweep voltammetry (LSV), Tafel polarization curves (Tafel) and weight-loss method. Subsequently, the prepared lead-steel layered composite electrodes were applied to the industrial production experiment for adiponitrile. The results indicated that lead-steel layered composite electrodes with excellent electrochemical properties were successfully prepared by hot dipping and roll-bonding technology. Analysis of microstructure and phase composition showed that the metallurgical bond of hot-dipped steel and lead plate could be achieved by the process of rolling, and the fracture feature was ductile fracture. And the conductivity, electrocatalytic activity and corrosion resistant of lead-steel layered composite electrode material were improved with the increase of rolling reduction ratio. The industrial production results showed that, compared with the traditional Pb-0.6%Ag electrode, the prepared lead-steel layered composite electrode at the rolling reduction ratio of 40% exhibited the best industrial performance, the current efficiency was increased by 4.94%, the average cell voltage was reduced by 19.4%, and the adiponectin yield was increased by 4.86%.

2018 ◽  
Vol 44 (15) ◽  
pp. 18420-18428 ◽  
Author(s):  
Zhaohui Han ◽  
Lei Xu ◽  
Chandrasekar Srinivasa Kannan ◽  
Jianhua Liu ◽  
Sivasankar Koppala ◽  
...  

2013 ◽  
Vol 566 ◽  
pp. 119-122 ◽  
Author(s):  
Haruo Ishizaki ◽  
Norihito Kijima ◽  
Masashi Yoshinaga ◽  
Junji Akimoto

Fe2O3/Ga2O3 composite and GaFeO3 electrodes worked as rechargeable electrode materials for lithium-ion batteries, whereas their capacities were gradually decreased with increasing of cycle number. The initial Li insertion capacities (cut-off voltage: 0.01 V) were 1643 mAh/g for Fe2O3/Ga2O3 composite and 1196 mAh/g for GaFeO3, respectively. Despite same Fe/Ga atomic ratio, Fe2O3/Ga2O3 composite showed a higher capacity than that of GaFeO3 over the 50 cycles.


2013 ◽  
Vol 60 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Tomonari TAKEUCHI ◽  
Hiroyuki KAGEYAMA ◽  
Koji NAKANISHI ◽  
Toshiaki OHTA ◽  
Atsushi SAKUDA ◽  
...  

2014 ◽  
Vol 487 ◽  
pp. 45-49
Author(s):  
Zhao Hui Han ◽  
Pei Xian Zhu ◽  
Xiu Qin Yang ◽  
Sheng Gang Zhou

The structure and properties of the Ti-Al composite electrode materials prepared by the anti-gravity casting method was analyzed by SEM, EDS, four-probe method and electrochemical workstation. The results show that the metallurgical bonding of Ti and Al can be achieved by the method of anti-gravity casting with the Al temperature800°C, mold temperature of 400°C, pressure difference 0.5MPa. The electrochemical properties of the composite electrode materials is much better than pure Ti anode. Under the same condition,polarization potential of composite materials will fell by 32mV~43mV in polarization potential of pure Ti, it can be increased by 60% or more in current density, the resistivity was only 1/10 of pure Ti.


2014 ◽  
Vol 627 ◽  
pp. 3-6 ◽  
Author(s):  
M.Y. Ho ◽  
Poi Sim Khiew ◽  
D. Isa ◽  
T.K. Tan ◽  
W.S. Chiu ◽  
...  

In this study, a symmetric electrochemical capacitor has been fabricated by adopting the lithiated compound (LiFePO4)-activated carbon (AC) composite as the core electrode materials. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (CV) in 1.0 M Na2SO3 solution. Experimental results reveal that the maximum specific capacitance of 112.41 F/g is obtained in 40 wt % LiFePO4 loading on AC electrode in comparison to that of pure AC electrode (76.24 F/g) in 1 M Na2SO3. The enhanced capacitive performance of the 40 wt % LiFeO4 –AC composite electrode is believed attributed to the contribution of synergistic effect of electric double layer capacitance (EDLC) on the surface of AC as well as pseudocapacitance via intercalation/extraction of Na+, SO32-and Li+ ions in LiFePO4 lattices. The composite electrodes can sustain a stable capacitive performance at least 1000 cycles with only ~5 % specific capacitance loss after 1000 cycles. Based on the findings above, 40 wt % LiFeO4 –AC composite electrodes which utilise low cost materials and environmental friendly electrolyte is worth being investigated in more details.


2011 ◽  
Vol 391-392 ◽  
pp. 18-22
Author(s):  
Zheng Jin ◽  
Dong Yu Zhao ◽  
Bo Hong Li ◽  
Xiao Min Ren ◽  
Shan Tao Yan ◽  
...  

The purpose of this paper is to develop feasible composite electrodes with a long cycle life and large specific capacitance and to investigate optimal ratio between aniline and carbon aerogels (CA) materials. The characterization of the composite electrode materials was studied by using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, cyclic voltammetry (CV) and the constant charge-discharge. The specific capacitance of the composite electrode materials, measured using cyclic voltammetry at scan rate of 1mV•s-1, was found to be 1139.66F•g-1. For a simple supercapcitor, the highest specific capacitance (127.53 F•g-1 at 30mA) is obtained at ratio between aniline and CA is 1:4.


NANO ◽  
2014 ◽  
Vol 09 (06) ◽  
pp. 1430002 ◽  
Author(s):  
M. Y. HO ◽  
P. S. KHIEW ◽  
D. ISA ◽  
T. K. TAN ◽  
W. S. CHIU ◽  
...  

With the emerging technology in the 21st century, which requires higher electrochemical performances, metal oxide composite electrodes in particular offer complementary properties of individual materials via the incorporation of both physical and chemical charge storage mechanism together in a single electrode. Numerous works reviewed herein have identified a wide variety of attractive metal oxide-based composite electrode material for symmetric and asymmetric electrochemical capacitors. The focus of the review is the detailed literature data and discussion regarding the electrochemical performance of various metal oxide composite electrodes fabricated from different configurations including binary and ternary composites. Additionally, projection of future development in hybrid capacitor coupling lithium metal oxides and carbonaceous materials are found to obtain significantly higher energy storage than currently available commercial electrochemical capacitors. This review describes the novel concept of lithium metal oxide electrode materials which are of value to researchers in developing high-energy and enhanced-cyclability electrochemical capacitors comparable to Li -ion batteries. In order to fully exploit the potential of metal oxide composite electrode materials, developing low cost, environment-friendly nanocomposite electrodes is certainly a research direction that should be extensively investigated in the future.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Ruiyu Wang ◽  
Mengfan Zhang ◽  
Hao Xu ◽  
Shuo Guo ◽  
Mengqi Chi ◽  
...  

In this study, a novel assisted liquid−phase plasma electrolysis was developed to realize one−step synthesis of popcorn biomass−derived porous carbon/cobalt tetroxide (popcorn−carbon/Co3O4) composites, effectively improving the structural stability and conductivity of Co3O4. The phase structure, morphologies, chemical composition, and weight ratio of the as−prepared popcorn−carbon/Co3O4 composites were systematically analyzed. The results of X−ray diffraction (XRD), Raman spectrometer, Fourier infrared spectrometer (FTIR), X−ray photoelectron spectrometer (XPS), and thermogravimetry analyzer (TG) proved the synthesis of the popcorn−carbon/Co3O4 composites. Co3O4 nanoparticles were distributed relatively uniformly on the popcorn−carbon surface. The electrochemical properties of the popcorn−carbon/Co3O4 composite electrode materials were analyzed for exploring the influence of different Co/C ratios on the electrochemical properties of composites. The results showed that the popcorn−carbon/Co3O4 composite electrode materials prepared under 200:1 mass ratio of Co(NO3)2·6H2O and popcorn−carbon possessed a specific capacitance and specific capacity of almost 1264 F/g (594 C/g) at a current density of 1 A/g, exhibiting a better electrochemical property. The efficient, fast, and novel assisted liquid−phase plasma electrolysis provides a new method for the preparation of composite electrode materials on the supercapacitors.


2011 ◽  
Vol 239-242 ◽  
pp. 3135-3141
Author(s):  
Zhao Hui Han ◽  
Pei Xian Zhu ◽  
Xiu Qin Yang ◽  
Jian Xu

The Ti-Al composite electrode materials was prepared by hot press diffusion bonding in this article, and by the scanning electron microscopy (SEM), the energy dispersive spectroscopy (EDS), four-probe method, electrochemical workstation test means were used to test the structure and properties of the samples. The results show that the method of hot pressing diffusion sintering can achieve metallurgical bonding of Ti and Al with static pressure of 6MPa, holding times of 120min, in Ar and bonding temperature higher than 550°C,as well resistivity of the composite had dropped significantly, it was only 1/10 of pure Ti. The electrochemical properties of the composite electrode materials is also much better than pure Ti anode, and preparation conditions on electrochemical properties and the resistivity is consistent with law. This also shows that the conductivity of metal matrix will directly affect the catalytic properties of electrode materials for electrochemical. Therefore, changes in the composition of the electrode base material and structure not only reduces the cost and improve the performance of the electrode, also reached the purpose of energy saving.


Sign in / Sign up

Export Citation Format

Share Document