The Study of the Interface Evolution and the Performance of the Ti-Al Composite Electrode Materials

2011 ◽  
Vol 239-242 ◽  
pp. 3135-3141
Author(s):  
Zhao Hui Han ◽  
Pei Xian Zhu ◽  
Xiu Qin Yang ◽  
Jian Xu

The Ti-Al composite electrode materials was prepared by hot press diffusion bonding in this article, and by the scanning electron microscopy (SEM), the energy dispersive spectroscopy (EDS), four-probe method, electrochemical workstation test means were used to test the structure and properties of the samples. The results show that the method of hot pressing diffusion sintering can achieve metallurgical bonding of Ti and Al with static pressure of 6MPa, holding times of 120min, in Ar and bonding temperature higher than 550°C,as well resistivity of the composite had dropped significantly, it was only 1/10 of pure Ti. The electrochemical properties of the composite electrode materials is also much better than pure Ti anode, and preparation conditions on electrochemical properties and the resistivity is consistent with law. This also shows that the conductivity of metal matrix will directly affect the catalytic properties of electrode materials for electrochemical. Therefore, changes in the composition of the electrode base material and structure not only reduces the cost and improve the performance of the electrode, also reached the purpose of energy saving.

2014 ◽  
Vol 487 ◽  
pp. 45-49
Author(s):  
Zhao Hui Han ◽  
Pei Xian Zhu ◽  
Xiu Qin Yang ◽  
Sheng Gang Zhou

The structure and properties of the Ti-Al composite electrode materials prepared by the anti-gravity casting method was analyzed by SEM, EDS, four-probe method and electrochemical workstation. The results show that the metallurgical bonding of Ti and Al can be achieved by the method of anti-gravity casting with the Al temperature800°C, mold temperature of 400°C, pressure difference 0.5MPa. The electrochemical properties of the composite electrode materials is much better than pure Ti anode. Under the same condition,polarization potential of composite materials will fell by 32mV~43mV in polarization potential of pure Ti, it can be increased by 60% or more in current density, the resistivity was only 1/10 of pure Ti.


2018 ◽  
Vol 44 (15) ◽  
pp. 18420-18428 ◽  
Author(s):  
Zhaohui Han ◽  
Lei Xu ◽  
Chandrasekar Srinivasa Kannan ◽  
Jianhua Liu ◽  
Sivasankar Koppala ◽  
...  

2021 ◽  
Author(s):  
Yang Xu ◽  
Zhaohui Han ◽  
Peixian Zhu ◽  
Shenggang Zhou

Abstract In this paper, Pb-63%Sn alloy was selected as an intermediate layer to plate on Q235 steel by the hot dipping method, and then the hot-dipped steel and the lead plate were welded by roll-bonding technology to prepare the lead-steel layered composite electrode materials. Scanning electron microscopy (SEM), Energy dispersion spectrum (EDS) and X-ray diffraction (XRD) were used to characterize the interface morphology and phase composition of samples, and the interface formation mechanism was also discussed. The electrochemical properties of the lead-steel layered composite electrode under different rolling reduction ratio were studied by linear sweep voltammetry (LSV), Tafel polarization curves (Tafel) and weight-loss method. Subsequently, the prepared lead-steel layered composite electrodes were applied to the industrial production experiment for adiponitrile. The results indicated that lead-steel layered composite electrodes with excellent electrochemical properties were successfully prepared by hot dipping and roll-bonding technology. Analysis of microstructure and phase composition showed that the metallurgical bond of hot-dipped steel and lead plate could be achieved by the process of rolling, and the fracture feature was ductile fracture. And the conductivity, electrocatalytic activity and corrosion resistant of lead-steel layered composite electrode material were improved with the increase of rolling reduction ratio. The industrial production results showed that, compared with the traditional Pb-0.6%Ag electrode, the prepared lead-steel layered composite electrode at the rolling reduction ratio of 40% exhibited the best industrial performance, the current efficiency was increased by 4.94%, the average cell voltage was reduced by 19.4%, and the adiponectin yield was increased by 4.86%.


2013 ◽  
Vol 60 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Tomonari TAKEUCHI ◽  
Hiroyuki KAGEYAMA ◽  
Koji NAKANISHI ◽  
Toshiaki OHTA ◽  
Atsushi SAKUDA ◽  
...  

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Ruiyu Wang ◽  
Mengfan Zhang ◽  
Hao Xu ◽  
Shuo Guo ◽  
Mengqi Chi ◽  
...  

In this study, a novel assisted liquid−phase plasma electrolysis was developed to realize one−step synthesis of popcorn biomass−derived porous carbon/cobalt tetroxide (popcorn−carbon/Co3O4) composites, effectively improving the structural stability and conductivity of Co3O4. The phase structure, morphologies, chemical composition, and weight ratio of the as−prepared popcorn−carbon/Co3O4 composites were systematically analyzed. The results of X−ray diffraction (XRD), Raman spectrometer, Fourier infrared spectrometer (FTIR), X−ray photoelectron spectrometer (XPS), and thermogravimetry analyzer (TG) proved the synthesis of the popcorn−carbon/Co3O4 composites. Co3O4 nanoparticles were distributed relatively uniformly on the popcorn−carbon surface. The electrochemical properties of the popcorn−carbon/Co3O4 composite electrode materials were analyzed for exploring the influence of different Co/C ratios on the electrochemical properties of composites. The results showed that the popcorn−carbon/Co3O4 composite electrode materials prepared under 200:1 mass ratio of Co(NO3)2·6H2O and popcorn−carbon possessed a specific capacitance and specific capacity of almost 1264 F/g (594 C/g) at a current density of 1 A/g, exhibiting a better electrochemical property. The efficient, fast, and novel assisted liquid−phase plasma electrolysis provides a new method for the preparation of composite electrode materials on the supercapacitors.


2016 ◽  
Vol 19 (2) ◽  
pp. 077-083
Author(s):  
Han Zhaohui ◽  
Zhu Peixian ◽  
Zhou Shenggang ◽  
Guo Yuzhong ◽  
Yang Yi

This paper starts with the structure design of the electrode base material, Ti/Cu electrode material instead of single metal Ti as the base material which was prepared by hot diffusion welding, the change of composite material structure is influences on electrochemical properties of Ti/Cu that was analyzed by SEM, electrochemical workstation and so on. The results show that the design changes of matrix structure of traditional Ti electrode is good for enhance the electrochemical performance of electrode, due to the design of layered composite structure was used, the inner Cu of composite material is current collector electrode and conductive channel carrier , it reduces the resistivity of the electrode material (its resistivity is only 1/15 of pure titanium electrode material) and improves the electrical conductivity of the electrode, in order to realize the uniformity of the current in the electrode, the electrochemical performance of the electrode was improved for the novel Ti/Cu laminated composite electrode materials.


2016 ◽  
Vol 8 (3) ◽  
pp. 03017-1-03017-7 ◽  
Author(s):  
I. F. Myronyuk ◽  
◽  
V. I. Mandzyuk ◽  
V. M. Sachko ◽  
R. P. Lisovsky ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4517
Author(s):  
Saheli Biswas ◽  
Shambhu Singh Rathore ◽  
Aniruddha Pramod Kulkarni ◽  
Sarbjit Giddey ◽  
Sankar Bhattacharya

Reversible solid oxide cells (rSOC) enable the efficient cyclic conversion between electrical and chemical energy in the form of fuels and chemicals, thereby providing a pathway for long-term and high-capacity energy storage. Amongst the different fuels under investigation, hydrogen, methane, and ammonia have gained immense attention as carbon-neutral energy vectors. Here we have compared the energy efficiency and the energy demand of rSOC based on these three fuels. In the fuel cell mode of operation (energy generation), two different routes have been considered for both methane and ammonia; Routes 1 and 2 involve internal reforming (in the case of methane) or cracking (in the case of ammonia) and external reforming or cracking, respectively. The use of hydrogen as fuel provides the highest round-trip efficiency (62.1%) followed by methane by Route 1 (43.4%), ammonia by Route 2 (41.1%), methane by Route 2 (40.4%), and ammonia by Route 1 (39.2%). The lower efficiency of internal ammonia cracking as opposed to its external counterpart can be attributed to the insufficient catalytic activity and stability of the state-of-the-art fuel electrode materials, which is a major hindrance to the scale-up of this technology. A preliminary cost estimate showed that the price of hydrogen, methane and ammonia produced in SOEC mode would be ~1.91, 3.63, and 0.48 $/kg, respectively. In SOFC mode, the cost of electricity generation using hydrogen, internally reformed methane, and internally cracked ammonia would be ~52.34, 46.30, and 47.11 $/MWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document