scholarly journals An Approach to Identify Urban Waterlogging on a Deltaic Plain using ArcGIS on CHD based Flow Accumulation Models

Author(s):  
Kaushik Bhaumik ◽  
Subhasish Das

Abstract The gradient for any point on the land surface can be calculated using the digital-elevation model. Some empirical correlations are available to determine the gradient of any points. A few studies were conducted for hilly forest areas to determine the aspect and gradient of various points using computational hydrodynamics (CHD) based techniques. On a plain surface, the accuracy of such techniques was rarely verified. The application of such techniques for a plain surface is also extremely challenging for its small slope. Therefore, the prime objective of the present study is to find out an advanced technique to more accurately determine the gradient of various points on a plain surface which may help in determining the key areas affected by run-off, subsequent flow accumulation, and waterlogging. Here, Kolkata city as a deltaic plain surface is chosen for this study. Upto 600 m × 600 grid sizes are used on the DEM map to calculate the run-off pattern using a D8 algorithm method and second-order, third-order, and fourth-order finite difference techniques of CHD. After finding out the gradient, the run-off pattern is determined from relatively higher to lower gradient points. Based on the run-off pattern, waterlogging points of a plain surface are precisely determined. The results obtained from all the different methods are compared with one other as well as with the actual waterlogging map of Kolkata. It is found that the D8 algorithm and fourth-order finite-difference-technique are the most accurate while determining the waterlogging areas of a plain surface. Next, true gradients of waterlogging points are calculated manually to compare the calculated gradient points using each method. This is also done to determine the relationship and error between the true and calculated gradient of waterlogged points using various statistical analysis methods. The relationship between true and calculated gradients is observed from weak to strong if the D8 algorithm is replaced by the newly introduced fourth-order finite difference technique. Better accuracy and stronger relationships can be achieved by using a smaller grid size.

2003 ◽  
Vol 8 (1) ◽  
pp. 3-18 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed to simulate the biosensor response in stirred as well as non stirred solution. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation the influence of the thickness of the enzyme layer as well the diffusion one on the biosensor response was investigated. The computer simulation was carried out using the finite difference technique.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


The Holocene ◽  
2021 ◽  
pp. 095968362199464
Author(s):  
Katarzyna Marcisz ◽  
Krzysztof Buczek ◽  
Mariusz Gałka ◽  
Włodzimierz Margielewski ◽  
Matthieu Mulot ◽  
...  

Landslide mountain fens formed in landslide depressions are dynamic environments as their development is disturbed by a number of factors, for example, landslides, slopewash, and surface run-off. These processes lead to the accumulation of mineral material and wood in peat. Disturbed peatlands are interesting archives of past environmental changes, but they may be challenging for providing biotic proxy-based quantitative reconstructions. Here we investigate long-term changes in testate amoeba communities from two landslide mountain fens – so far an overlooked habitat for testate amoeba investigations. Our results show that abundances of testate amoebae are extremely low in this type of peatlands, therefore not suitable for providing quantitative depth-to-water table reconstructions. However, frequent shifts of dominant testate amoeba species reflect dynamic lithological situation of the studied fens. We observed that high and stable mineral matter input into the peatlands was associated with high abundances of species producing agglutinated (xenosomic) as well as idiosomic shells which prevailed in the testate amoeba communities in both analyzed profiles. This is the first study that explores testate amoebae of landslide mountain fens in such detail, providing novel information about microbial communities of these ecosystems.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.


Sign in / Sign up

Export Citation Format

Share Document