scholarly journals Modeling the Radial Stem Growth of the Pine (Pinus sylvestris L.) Forests Using the Satellite-Derived NDVI and LST (MODIS/AQUA) Data

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.

2021 ◽  
Vol 52 (4) ◽  
pp. 793-801
Author(s):  
Al-Jbouri & Al-Timimi

Agriculture is the most important and most dependent economic activity and influenced by climatic conditions as the climate elements represented by solar radiation, temperature, wind and relative humidity. Therefore, is necessary that analyze and understand the relationship between climate and agriculture. The aim of this study to assessment the relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) for three regions of Diyala Governorate in Iraq (Al Muqdadya, Baladrooz, and Baquba) by through using of remote sensing techniques and geographic information system (GIS).The Normalized difference vegetation index NDVI and land surface temperature (LST) were used in two of the Landsat-5 ETM + and Landsat-8 OLI satellite imagery during the years 1999 and 2019.  The results showed that increased in NDVI and decreased in LST for 2019, while for 1999 increased in LST and decreased in NDVI for the three regions. Finally, the regression was used to obtain that correlation between LST and NDVI. It was concluded that the correlation coefficient between NDVI and LST is negative, where the strongest correlation was 0.76 for Baquba and weakest correlation was 0.55 for Muqdadyia.


2021 ◽  
Vol 13 (15) ◽  
pp. 2851
Author(s):  
Tao Yu ◽  
Guli Jiapaer ◽  
Anming Bao ◽  
Guoxiong Zheng ◽  
Liangliang Jiang ◽  
...  

Land degradation poses a critical threat to the stability and security of ecosystems, especially in salinized areas. Monitoring the land degradation of salinized areas facilitates land management and ecological restoration. In this research, we integrated the salinization index (SI), albedo, normalized difference vegetation index (NDVI) and land surface soil moisture index (LSM) through the principal component analysis (PCA) method to establish a salinized land degradation index (SDI). Based on the SDI, the land degradation of a typical salinized area in the Central Asia Amu Darya delta (ADD) was analysed for the period 1990–2019. The results showed that the proposed SDI had a high positive correlation (R2 = 0.89, p < 0.001) with the soil salt content based on field sampling, indicating that the SDI can reveal the land degradation characteristics of the ADD. The SDI indicated that the extreme and strong land degradation areas increased from 1990 to 2019, mainly in the downstream and peripheral regions of the ADD. From 1990 to 2000, land degradation improvement over a larger area than developed, conversely, from 2000 to 2019, and especially, from 2000 to 2010, the proportion of land degradation developed was 32%, which was mainly concentrated in the downstream region of the ADD. The spatial autocorrelation analysis indicated that the SDI values of Moran’s I in 1990, 2000, 2010 and 2019 were 0.82, 0.78, 0.82 and 0.77, respectively, suggesting that the SDI was notably clustered in space rather than randomly distributed. The expansion of unused land due to land use change, water withdrawal from the Amu Darya River and the discharge of salt downstream all contributed to land degradation in the ADD. This study provides several valuable insights into the land degradation monitoring and management of this salinized delta and similar settings worldwide.


DYNA ◽  
2020 ◽  
Vol 87 (214) ◽  
pp. 204-214
Author(s):  
Carlos David Ojeda Flechas ◽  
Jaime Alejandro Burbano Rodriguez ◽  
Yesid Carvajal Escobar ◽  
Francisco Luis Hernández Torres

The Synthesized Drought Index in the Valle del Cauca was evaluated, applying Principal Component Analysis to satellite images that described: Land Surface Temperature, Normalized Difference Vegetation Index and Precipitation. The magnitude of drought represented by this index was identified in the first component and validated with the Quarterly Standardized Precipitation Index (SPI – 3), obtained from 78 weather stations, which achieved correlations of between 0.55 and 0.71 during warm ENSO events. Comprehensive drought in the department was characterized by exhibiting areas of non-drought in the southwest, in the center-south a transition phase from wet to extremely dry, the Inter-Andean Valley showed sectors of severe drought, and to the east, extremely dry areas. Additionally, in a pilot municipality in the driest area of the department, a susceptibility model was implemented to detect areas affected by drought, applying the Analytical Hierarchical Process.


2011 ◽  
Vol 50 (3) ◽  
pp. 767-775 ◽  
Author(s):  
Kevin Gallo ◽  
Robert Hale ◽  
Dan Tarpley ◽  
Yunyue Yu

Abstract Clear and cloudy daytime comparisons of land surface temperature (LST) and air temperature (Tair) were made for 14 stations included in the U.S. Climate Reference Network (USCRN) of stations from observations made from 2003 through 2008. Generally, LST was greater than Tair for both the clear and cloudy conditions; however, the differences between LST and Tair were significantly less for the cloudy-sky conditions. In addition, the relationships between LST and Tair displayed less variability under the cloudy-sky conditions than under clear-sky conditions. Wind speed, time of the observation of Tair and LST, season, the occurrence of precipitation at the time of observation, and normalized difference vegetation index values were all considered in the evaluation of the relationship between Tair and LST. Mean differences between LST and Tair of less than 2°C were observed under cloudy conditions for the stations, as compared with a minimum difference of greater than 2°C (and as great as 7+°C) for the clear-sky conditions. Under cloudy conditions, Tair alone explained over 94%—and as great as 98%—of the variance observed in LST for the stations included in this analysis, as compared with a range of 81%–93% for clear-sky conditions. Because of the relatively homogeneous land surface characteristics encouraged in the immediate vicinity of USCRN stations, and potential regional differences in surface features that might influence the observed relationships, additional analyses of the relationships between LST and Tair for additional regions and land surface conditions are recommended.


2020 ◽  
Author(s):  
Jamal Elfarkh ◽  
Salah Er-Raki ◽  
Jamal Ezzahar ◽  
Abdelghani Chehbouni ◽  
Bouchra Aithssaine ◽  
...  

&lt;p&gt;The main goal of this work was to evaluate the potential of the Shuttleworth-Wallace (SW) model for mapping actual crop evapotranspiration (ET) over complex terrain located within the foothill of the Atlas Mountain (Morocco). This model needs many input variables to compute soil (r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;s&lt;/sup&gt;) and vegetation (r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;v&lt;/sup&gt;) resistances, which are often difficult to estimate at large scale particularly soil moisture. In this study, a new approach to spatialize r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;s&lt;/sup&gt; and r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;v&lt;/sup&gt; based on two thermal-based proxy variables is proposed. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) derived from LANDSAT data were combined with the endmember temperatures&amp;#160; for soil (Ts&lt;sub&gt;min&lt;/sub&gt; and Ts&lt;sub&gt;max&lt;/sub&gt;) and vegetation (Tv&lt;sub&gt;min&lt;/sub&gt; and Tv&lt;sub&gt;max&lt;/sub&gt;), which are simulated by a surface energy balance model, to compute the temperature of the two components, namely the soil (Ts) and the vegetation (Tv). Based on these temperatures, two thermal proxies (SIss for soil and SIsv for vegetation) were calculated and related to r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;s&lt;/sup&gt; and r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;v&lt;/sup&gt;, with an empirical exponential relationship (with a correlation coefficient (R) of about 0,6 and 0,5 for soil and vegetation, respectively). The proposed approach was firstly evaluated at a local scale, by comparing the results to observations by an eddy covariance system installed over an area planted with olive trees intercropped with wheat. In a second step, the new approach was applied over a large area which contains a mixed vegetation (tall and short vegetation) crossed by a river to derive r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;s&lt;/sup&gt; and r&lt;sub&gt;s&lt;/sub&gt;&lt;sup&gt;v&lt;/sup&gt;, and thereafter to estimate ET. A Large aperture scintillometer (LAS) installed over a transect of 1.4 km and spanning the total area is used to validate the obtained ET. The comparison confirms the ability of the proposed approach to provide satisfactory ET maps with an RMSE and R&lt;sup&gt;2&lt;/sup&gt; equal to 52.51 W/m&lt;sup&gt;2&lt;/sup&gt; and 0.80, respectively.&lt;/p&gt;


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Sign in / Sign up

Export Citation Format

Share Document